Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Pediatr ; 9(1): 7, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35445327

ABSTRACT

Even more than 50 years after its initial description, bronchopulmonary dysplasia (BPD) remains one of the most important and lifelong sequelae following premature birth. Tremendous efforts have been undertaken since then to reduce this ever-increasing disease burden but a therapeutic breakthrough preventing BPD is still not in sight. The inflammatory response provoked in the immature lung is a key driver of distorted lung development and impacts the formation of alveolar, mesenchymal, and vascular structures during a particularly vulnerable time-period. During the last 5 years, new scientific insights have led to an improved pathomechanistic understanding of BPD origins and disease drivers. Within the framework of current scientific progress, concepts involving disruption of the balance of key inflammatory and lung growth promoting pathways by various stimuli, take center stage. Still today, the number of efficient therapeutics available to prevent BPD is limited to a few, well-established pharmacological interventions including postnatal corticosteroids, early caffeine administration, and vitamin A. Recent advances in the clinical care of infants in the neonatal intensive care unit (NICU) have led to improvements in survival without a consistent reduction in the incidence of BPD. Our update provides latest insights from both preclinical models and clinical cohort studies and describes novel approaches to prevent BPD.

2.
Int J Mol Sci ; 22(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34639034

ABSTRACT

Oxygen toxicity continues to be one of the inevitable injuries to the immature lung. Reactive oxygen species (ROS) production is the initial step leading to lung injury and, subsequently, the development of bronchopulmonary dysplasia (BPD). Today, BPD remains the most important disease burden following preterm delivery and results in life-long restrictions in lung function and further important health sequelae. Despite the tremendous progress in the pathomechanistic understanding derived from preclinical models, the clinical needs for preventive or curative therapies remain unmet. This review summarizes the clinical progress on guiding oxygen delivery to the preterm infant and elaborates future directions of research that need to take into account both hyperoxia and hypoxia as ROS sources and BPD drivers. Many strategies have been tested within clinical trials based on the mechanistic understanding of ROS actions, but most have failed to prove efficacy. The majority of these studies were tested in an era before the latest modes of non-invasive respiratory support and surfactant application were introduced or were not appropriately powered. A comprehensive re-evaluation of enzymatic, antioxidant, and anti-inflammatory therapies to prevent ROS injury is therefore indispensable. Strategies will only succeed if they are applied in a timely and vigorous manner and with the appropriate outcome measures.


Subject(s)
Hyperoxia/complications , Infant, Premature , Lung Injury/etiology , Lung Injury/metabolism , Oxygen/adverse effects , Antioxidants/metabolism , Bronchopulmonary Dysplasia/epidemiology , Bronchopulmonary Dysplasia/etiology , Cost of Illness , Disease Susceptibility , Global Health , Humans , Infant, Newborn , Lung Injury/diagnosis , Lung Injury/therapy , Oxygen Consumption , Reactive Oxygen Species
3.
Int J Mol Sci ; 22(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34681665

ABSTRACT

In utero, the fetus and its lungs develop in a hypoxic environment, where HIF-1α and VEGFA signaling constitute major determinants of further development. Disruption of this homeostasis after preterm delivery and extrauterine exposure to high fractions of oxygen are among the key events leading to bronchopulmonary dysplasia (BPD). Reactive oxygen species (ROS) production constitutes the initial driver of pulmonary inflammation and cell death, altered gene expression, and vasoconstriction, leading to the distortion of further lung development. From preclinical studies mainly performed on rodents over the past two decades, the deleterious effects of oxygen toxicity and the injurious insults and downstream cascades arising from ROS production are well recognized. This article provides a concise overview of disease drivers and different therapeutic approaches that have been successfully tested within experimental models. Despite current studies, clinical researchers are still faced with an unmet clinical need, and many of these strategies have not proven to be equally effective in clinical trials. In light of this challenge, adapting experimental models to the complexity of the clinical situation and pursuing new directions constitute appropriate actions to overcome this dilemma. Our review intends to stimulate research activities towards the understanding of an important issue of immature lung injury.


Subject(s)
Lung/drug effects , Oxygen/toxicity , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Epigenesis, Genetic , Humans , Lung/blood supply , Lung/metabolism , Mitochondria/metabolism , Neovascularization, Physiologic , Oxidative Stress/drug effects , Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...