Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
eNeuro ; 11(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38467426

ABSTRACT

Auditory perception can be significantly disrupted by noise. To discriminate sounds from noise, auditory scene analysis (ASA) extracts the functionally relevant sounds from acoustic input. The zebra finch communicates in noisy environments. Neurons in their secondary auditory pallial cortex (caudomedial nidopallium, NCM) can encode song from background chorus, or scenes, and this capacity may aid behavioral ASA. Furthermore, song processing is modulated by the rapid synthesis of neuroestrogens when hearing conspecific song. To examine whether neuroestrogens support neural and behavioral ASA in both sexes, we retrodialyzed fadrozole (aromatase inhibitor, FAD) and recorded in vivo awake extracellular NCM responses to songs and scenes. We found that FAD affected neural encoding of songs by decreasing responsiveness and timing reliability in inhibitory (narrow-spiking), but not in excitatory (broad-spiking) neurons. Congruently, FAD decreased neural encoding of songs in scenes for both cell types, particularly in females. Behaviorally, we trained birds using operant conditioning and tested their ability to detect songs in scenes after administering FAD orally or injected bilaterally into NCM. Oral FAD increased response bias and decreased correct rejections in females, but not in males. FAD in NCM did not affect performance. Thus, FAD in the NCM impaired neuronal ASA but that did not lead to behavioral disruption suggesting the existence of resilience or compensatory responses. Moreover, impaired performance after systemic FAD suggests involvement of other aromatase-rich networks outside the auditory pathway in ASA. This work highlights how transient estrogen synthesis disruption can modulate higher-order processing in an animal model of vocal communication.


Subject(s)
Auditory Cortex , Finches , Female , Animals , Male , Finches/physiology , Aromatase , Reproducibility of Results , Vocalization, Animal/physiology , Acoustic Stimulation , Auditory Pathways/physiology , Auditory Perception/physiology , Auditory Cortex/physiology
2.
Anim Behav ; 210: 127-137, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38505105

ABSTRACT

Motivation to seek social interactions is inherent to all social species. For instance, even with risk of disease transmission in a recent pandemic, humans sought out frequent in-person social interactions. In other social animals, socialization can be prioritized even over water or food consumption. Zebra finches, Taeniopygia guttata, are highly gregarious songbirds widely used in behavioural and physiological research. Songbirds, like humans, are vocal learners during development, which rely on intense auditory learning. Aside from supporting song learning, auditory learning further supports individual identification, mate choice and outcome associations in songbirds. To study auditory learning in a laboratory setting, studies often employ operant paradigms with food restriction and reinforcement and require complete social isolation, which can result in stress and other unintended physiological consequences for social species. Thus, in this work, we designed an operant behavioural method leveraging the sociality of zebra finches for goal-directed behaviours. Our approach relies on visual social reinforcement, without depriving the animals of food or social contact. Using this task, we found that visual social reinforcement was a strong motivational drive for operant behaviour. Motivation was sensitive to familiarity towards the stimulus animal and higher when engaging with a familiar versus a novel individual. We further show that this tool can be used to assess auditory discrimination learning using either songs or synthetic pure tones as stimuli. As birds gained experience in the task, they developed a strategy to maximize reward acquisition in spite of receiving more punishment, i.e. liberal response bias. Our operant paradigm provides an alternative to tasks using food reinforcement and could be applied to a variety of highly social species, such as rodents and nonhuman primates.

3.
Trends Neurosci ; 47(1): 6-8, 2024 01.
Article in English | MEDLINE | ID: mdl-37798203

ABSTRACT

Jumping spiders have extraordinary vision. Using multiple, specialized eyes, these spiders selectively gather and integrate disparate streams of information about motion, color, and spatial detail. The saccadic movements of a forward-facing pair of eyes allow spiders to inspect their surroundings and identify objects. Here, we discuss the jumping spider visual system and how visual information is attended to and processed.


Subject(s)
Motion Perception , Spiders , Animals , Vision, Ocular
4.
bioRxiv ; 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36945416

ABSTRACT

Social encounters rely on sensory cues that carry nuanced information to guide social decision-making. While high-level features of social signals are processed in the telencephalic pallium, nuclei controlling social behaviors, called the social behavior network (SBN), reside mainly in the diencephalon. Although it is well known how mammalian olfactory pallium interfaces with the SBN, there is little information for how pallial processing of other sensory modalities can modulate SBN circuits. This is surprising given the importance of complex vocalizations, for example, for social behavior in many vertebrate taxa such as humans and birds. Using gregarious and highly vocal songbirds, female Zebra finches, we asked to what extent auditory pallial circuits provide consequential input to the SBN as it processes social sensory cues. We transiently inactivated auditory pallium of female Zebra finches during song playback and examined song-induced activation in SBN nuclei. Auditory pallial inactivation impaired responses to song specifically within the lateral ventromedial nucleus of the hypothalamus (VMHl), providing the first evidence in vertebrates of a connection between auditory pallium and the SBN. This same treatment elevated feeding behavior, which also correlated with VMHl activation. This suggests that signals from auditory pallium to VMHl can tune the balance between social attention and feeding drive. A descending influence of sensory pallium on hypothalamic circuits could therefore provide a functional connection for the integration of social stimuli with internal state to influence social decision-making. Significance: Sensory cues such as vocalizations contain important social information. These social signals can be substantially nuanced, containing information about vocalizer identity, prior experience, valence, and emotional state. Processing these features of vocalizations necessitates processing the fast, complex sound streams in song or speech, which depends on circuits in pallial cortex. But whether and how this information is then transferred to social circuits in limbic and hypothalamic regions remains a mystery. Here, we identify a top-down influence of the songbird auditory pallium on one specific node of the social behavior network within the hypothalamus. Descending functional connections such as these may be critical for the wide range of vertebrate species that rely on intricate sensory communication signals to guide social decision-making.

5.
Cereb Cortex ; 33(7): 3401-3420, 2023 03 21.
Article in English | MEDLINE | ID: mdl-35849820

ABSTRACT

Sensory neurons parse millisecond-variant sound streams like birdsong and speech with exquisite precision. The auditory pallial cortex of vocal learners like humans and songbirds contains an unconventional neuromodulatory system: neuronal expression of the estrogen synthesis enzyme aromatase. Local forebrain neuroestrogens fluctuate when songbirds hear a song, and subsequently modulate bursting, gain, and temporal coding properties of auditory neurons. However, the way neuroestrogens shape intrinsic and synaptic properties of sensory neurons remains unknown. Here, using a combination of whole-cell patch clamp electrophysiology and calcium imaging, we investigate estrogenic neuromodulation of auditory neurons in a region resembling mammalian auditory association cortex. We found that estradiol rapidly enhances the temporal precision of neuronal firing via a membrane-bound G-protein coupled receptor and that estradiol rapidly suppresses inhibitory synaptic currents while sparing excitation. Notably, the rapid suppression of intrinsic excitability by estradiol was predicted by membrane input resistance and was observed in both males and females. These findings were corroborated by analysis of in vivo electrophysiology recordings, in which local estrogen synthesis blockade caused acute disruption of the temporal correlation of song-evoked firing patterns. Therefore, on a modulatory timescale, neuroestrogens alter intrinsic cellular properties and inhibitory neurotransmitter release to regulate the temporal precision of higher-order sensory neurons.


Subject(s)
Auditory Cortex , Finches , Humans , Male , Animals , Female , Estrogens/pharmacology , Finches/metabolism , Vocalization, Animal/physiology , Estradiol , Auditory Cortex/physiology , Neurons/physiology , Mammals/metabolism
6.
Gene ; 843: 146803, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35961439

ABSTRACT

The zebra finch (Taeniopygia guttata), a representative oscine songbird species, has been widely studied to investigate behavioral neuroscience, most notably the neurobiological basis of vocal learning, a rare trait shared in only a few animal groups including humans. In 2019, an updated zebra finch genome annotation (bTaeGut1_v1.p) was released from the Ensembl database and is substantially more comprehensive than the first version published in 2010. In this study, we utilized the publicly available RNA-seq data generated from Illumina-based short-reads and PacBio single-molecule real-time (SMRT) long-reads to assess the bird transcriptome. To analyze the high-throughput RNA-seq data, we adopted a hybrid bioinformatic approach combining short and long-read pipelines. From our analysis, we added 220 novel genes and 8,134 transcript variants to the Ensembl annotation, and predicted a new proteome based on the refined annotation. We further validated 18 different novel proteins by using mass-spectrometry data generated from zebra finch caudal telencephalon tissue. Our results provide additional resources for future studies of zebra finches utilizing this improved bird genome annotation and proteome.


Subject(s)
Finches , Animals , Brain , Female , Finches/genetics , Humans , Male , Proteome/genetics , Sex Characteristics , Transcriptome/genetics , Vocalization, Animal
7.
J Assoc Res Otolaryngol ; 23(2): 151-166, 2022 04.
Article in English | MEDLINE | ID: mdl-35235100

ABSTRACT

Distinguishing between regular and irregular heartbeats, conversing with speakers of different accents, and tuning a guitar-all rely on some form of auditory learning. What drives these experience-dependent changes? A growing body of evidence suggests an important role for non-sensory influences, including reward, task engagement, and social or linguistic context. This review is a collection of contributions that highlight how these non-sensory factors shape auditory plasticity and learning at the molecular, physiological, and behavioral level. We begin by presenting evidence that reward signals from the dopaminergic midbrain act on cortico-subcortical networks to shape sound-evoked responses of auditory cortical neurons, facilitate auditory category learning, and modulate the long-term storage of new words and their meanings. We then discuss the role of task engagement in auditory perceptual learning and suggest that plasticity in top-down cortical networks mediates learning-related improvements in auditory cortical and perceptual sensitivity. Finally, we present data that illustrates how social experience impacts sound-evoked activity in the auditory midbrain and forebrain and how the linguistic environment rapidly shapes speech perception. These findings, which are derived from both human and animal models, suggest that non-sensory influences are important regulators of auditory learning and plasticity and are often implemented by shared neural substrates. Application of these principles could improve clinical training strategies and inform the development of treatments that enhance auditory learning in individuals with communication disorders.


Subject(s)
Auditory Cortex , Neuronal Plasticity , Animals , Auditory Cortex/physiology , Auditory Perception/physiology , Neuronal Plasticity/physiology
8.
Front Neuroendocrinol ; 65: 100973, 2022 04.
Article in English | MEDLINE | ID: mdl-34942232

ABSTRACT

This review explores the role of aromatase in the brain as illuminated by a set of conserved network-level connections identified in several vertebrate taxa. Aromatase-expressing neurons are neurochemically heterogeneous but the brain regions in which they are found are highly-conserved across the vertebrate lineage. During development, aromatase neurons have a prominent role in sexual differentiation of the brain and resultant sex differences in behavior and human brain diseases. Drawing on literature primarily from birds and rodents, we delineate brain regions that express aromatase and that are strongly interconnected, and suggest that, in many species, aromatase expression essentially defines the Social Behavior Network. Moreover, in several cases the inputs to and outputs from this core Social Behavior Network also express aromatase. Recent advances in molecular and genetic tools for neuroscience now enable in-depth and taxonomically diverse studies of the function of aromatase at the neural circuit level.


Subject(s)
Aromatase , Brain , Animals , Aromatase/metabolism , Brain/metabolism , Female , Male , Neurons/metabolism , Sex Characteristics , Social Behavior
9.
Front Neuroendocrinol ; 64: 100967, 2022 01.
Article in English | MEDLINE | ID: mdl-34808232

ABSTRACT

Songbirds have emerged as exceptional research subjects for helping us appreciate and understand estrogen synthesis and function in brain. In the context of recognizing the vertebrate-wide importance of brain aromatase expression, in this review we highlight where we believe studies of songbirds have provided clarification and conceptual insight. We follow by focusing on more recent studies of aromatase and neuroestrogen function in the hippocampus and the pallial auditory processing region NCM of songbirds. With perspectives drawn from this body of work, we speculate that the evolution of enhanced neural estrogen signaling, including in the mediation of social behaviors, may have given songbirds the resilience to radiate into one of the most successful vertebrate groups on the planet.


Subject(s)
Songbirds , Vocalization, Animal , Animals , Aromatase/genetics , Aromatase/metabolism , Brain/metabolism , Estrogens/metabolism , Hippocampus/metabolism , Neurons/metabolism , Songbirds/metabolism
10.
Eur J Neurosci ; 54(9): 7072-7091, 2021 11.
Article in English | MEDLINE | ID: mdl-34535925

ABSTRACT

Estrogens support major brain functions including cognition, reproduction, neuroprotection and sensory processing. Neuroestrogens are synthesized within some brain areas by the enzyme aromatase and can rapidly modulate local circuit functions, yet the cellular physiology and sensory-response profiles of aromatase neurons are essentially unknown. In songbirds, social and acoustic stimuli drive neuroestrogen elevations in the auditory forebrain caudomedial nidopallium (NCM). In both males and females, neuroestrogens rapidly enhance NCM auditory processing and auditory learning. Estrogen-producing neurons in NCM may therefore exhibit distinguishing profiles for sensory-activation and intrinsic electrophysiology. Here, we explored these questions using both immunocyctochemistry and electrophysiological recordings. Immunoreactivity for aromatase and the immediate early gene EGR1, a marker of activity and plasticity, were quantified in NCM of song-exposed animals versus silence-exposed controls. Using whole-cell patch clamp recordings from NCM slices, we also documented the intrinsic excitability profiles of aromatase-positive and aromatase-negative neurons. We observed that a subset of aromatase neurons were significantly activated during song playback, in both males and females, and in both hemispheres. A comparable population of non-aromatase-expressing neurons were also similarly driven by song stimulation. Membrane properties (i.e., resting membrane potential, rheobase, input resistance and multiple action potential parameters) were similarly indistinguishable between NCM aromatase and non-aromatase neurons. Together, these findings demonstrate that aromatase and non-aromatase neurons in NCM are indistinct in terms of their intrinsic electrophysiology and responses to song. Nevertheless, such similarities in response properties may belie more subtle differences in underlying conductances and/or computational roles that may be crucial to their function.


Subject(s)
Auditory Cortex , Finches , Animals , Aromatase/genetics , Aromatase/metabolism , Auditory Cortex/metabolism , Estradiol , Female , Male , Neurons/metabolism , Prosencephalon/metabolism , Vocalization, Animal
11.
J Neurosci ; 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34083251

ABSTRACT

Vocal learning species must form and extensively hone associations between sounds and social contingencies. In songbirds, dopamine signaling guides song motor-production, variability, and motivation, but it is unclear how dopamine regulates fundamental auditory associations for learning new sounds. We hypothesized that dopamine regulates learning in the auditory pallium, in part by interacting with local neuroestradiol signaling. Here, we show that zebra finch auditory neurons frequently coexpress D1 receptor (D1R) protein, neuroestradiol-synthase, GABA, and parvalbumin. Auditory classical conditioning increased neuroplasticity gene induction in D1R-positive neurons. In vitro, D1R pharmacological activation reduced the amplitude of GABAergic and glutamatergic currents and increased the latter's frequency. In vivo, D1R activation reduced the firing of putative interneurons, increased the firing of putative excitatory neurons, and made both neuronal types unable to adapt to novel stimuli. Together, these findings support the hypothesis that dopamine acting via D1Rs modulates auditory association in the songbird sensory pallium.SIGNIFICANCE STATEMENTOur key finding is that auditory forebrain D1 receptors modulate auditory plasticity, in support of the hypothesis that dopamine modulates the formation of associations between sounds and outcomes. Recent work in songbirds has identified roles for dopamine in driving reinforcement learning and motor variability in song production. This leaves open whether dopamine shapes the initial events that are critical for learning vocalizations, e.g., auditory learning. Our study begins to address this question in the songbird caudomedial nidopallium (NCM), an analogue of the mammalian secondary auditory cortex. Our findings indicate that dopamine receptors are important modulators of excitatory/inhibitory balance and sound association learning mechanisms in the NCM, a system that could be a fundamental feature of vertebrate ascending auditory pathways.

12.
Curr Biol ; 31(13): 2831-2843.e6, 2021 07 12.
Article in English | MEDLINE | ID: mdl-33989528

ABSTRACT

In vertebrates, advanced cognitive abilities are typically associated with the telencephalic pallium. In mammals, the pallium is a layered mixture of excitatory and inhibitory neuronal populations with distinct molecular, physiological, and network phenotypes. This cortical architecture is proposed to support efficient, high-level information processing. Comparative perspectives across vertebrates provide a lens to understand the common features of pallium that are important for advanced cognition. Studies in songbirds have established strikingly parallel features of neuronal types between mammalian and avian pallium. However, lack of genetic access to defined pallial cell types in non-mammalian vertebrates has hindered progress in resolving connections between molecular and physiological phenotypes. A definitive mapping of the physiology of pallial cells onto their molecular identities in birds is critical for understanding how synaptic and computational properties depend on underlying molecular phenotypes. Using viral tools to target excitatory versus inhibitory neurons in the zebra finch auditory association pallium (calmodulin-dependent kinase alpha [CaMKIIα] and glutamate decarboxylase 1 [GAD1] promoters, respectively), we systematically tested predictions derived from mammalian pallium. We identified two genetically distinct neuronal populations that exhibit profound physiological and computational similarities with mammalian excitatory and inhibitory pallial cells, definitively aligning putative cell types in avian caudal nidopallium with these molecular identities. Specifically, genetically identified CaMKIIα and GAD1 cell types in avian auditory association pallium exhibit distinct intrinsic physiological parameters, distinct auditory coding principles, and inhibitory-dependent pallial synchrony, gamma oscillations, and local suppression. The retention, or convergence, of these molecular and physiological features in both birds and mammals clarifies the characteristics of pallial circuits for advanced cognitive abilities.


Subject(s)
Songbirds , Telencephalon , Animals , Mammals/genetics , Neurons , Songbirds/genetics , Vertebrates
13.
Integr Comp Biol ; 61(1): 316-336, 2021 07 23.
Article in English | MEDLINE | ID: mdl-33822047

ABSTRACT

Goal-directed learning is a key contributor to evolutionary fitness in animals. The neural mechanisms that mediate learning often involve the neuromodulator dopamine. In higher order cortical regions, most of what is known about dopamine's role is derived from brain regions involved in motivation and decision-making, while significantly less is known about dopamine's potential role in motor and/or sensory brain regions to guide performance. Research on rodents and primates represents over 95% of publications in the field, while little beyond basic anatomy is known in other vertebrate groups. This significantly limits our general understanding of how dopamine signaling systems have evolved as organisms adapt to their environments. This review takes a pan-vertebrate view of the literature on the role of dopamine in motor/sensory cortical regions, highlighting, when available, research on non-mammalian vertebrates. We provide a broad perspective on dopamine function and emphasize that dopamine-induced plasticity mechanisms are widespread across all cortical systems and associated with motor and sensory adaptations. The available evidence illustrates that there is a strong anatomical basis-dopamine fibers and receptor distributions-to hypothesize that pallial dopamine effects are widespread among vertebrates. Continued research progress in non-mammalian species will be crucial to further our understanding of how the dopamine system evolved to shape the diverse array of brain structures and behaviors among the vertebrate lineage.


Subject(s)
Dopamine , Learning , Motor Cortex/physiology , Neuronal Plasticity , Animals , Dopamine/physiology , Motivation , Vertebrates
14.
Dev Neurobiol ; 81(2): 123-138, 2021 03.
Article in English | MEDLINE | ID: mdl-33369121

ABSTRACT

Encoding of conspecific signals during development can reinforce species barriers as well as set the stage for learning and production of species-typical vocalizations. In altricial songbirds, the development of the auditory system is not complete at hatching, so it is unknown the degree to which recently hatched young can process auditory signals like birdsong. We measured in vivo extracellular responses to song stimuli in a zebra finch (Taeniopygia guttata) secondary auditory forebrain region, the caudomedial nidopallium (NCM). We recorded from three age groups between 13 days post-hatch and adult to identify possible shifts in stimulus encoding that occur before the opening of the sensitive period of song motor learning. We did not find differences in putative cell type composition, firing rate, response strength, and selectivity across ages. Across ages narrow-spiking units had higher firing rates, response strength, accuracy, and trial-by-trial reliability along with lower selectivity than broad-spiking units. In addition, we showed that stimulus-specific adaptation, a characteristic of adult NCM, was also present in nestlings and fledglings. These results indicate that most features of secondary auditory processing are already adult-like shortly after hatching. Furthermore, we showed that selectivity for species-specific stimuli is similar across all ages, with the greatest fidelity in temporal coding in response to conspecific song and domesticated Bengalese finch song, and reduced fidelity in response to owl finch song, a more ecologically relevant heterospecific, and white noise. Our study provides the first evidence that the electrophysiological properties of higher-order auditory neurons are already mature in nestling songbirds.


Subject(s)
Finches , Animals , Acoustic Stimulation , Auditory Perception/physiology , Prosencephalon/physiology , Reproducibility of Results , Vocalization, Animal
15.
Sci Rep ; 10(1): 3602, 2020 02 27.
Article in English | MEDLINE | ID: mdl-32108169

ABSTRACT

Birdsong learning, like human speech, depends on the early memorization of auditory models, yet how initial auditory experiences are formed and consolidated is unclear. In songbirds, a putative cortical locus is the caudomedial nidopallium (NCM), and one mechanism to facilitate auditory consolidation is 17ß-estradiol (E2), which is associated with human speech-language development, and is abundant in both NCM and human temporal cortex. Circulating and NCM E2 levels are dynamic during learning, suggesting E2's involvement in encoding recent auditory experiences. Therefore, we tested this hypothesis in juvenile male songbirds using a comprehensive assessment of neuroanatomy, behavior, and neurophysiology. First, we found that brain aromatase expression, and thus the capacity to synthesize neuroestrogens, remains high in the auditory cortex throughout development. Further, while systemic estrogen synthesis blockade suppressed juvenile song production, neither systemic nor unilateral E2 synthesis inhibition in NCM disrupted eventual song imitation. Surprisingly, early life neuroestrogen synthesis blockade in NCM enhanced the neural representations of both the birds' own song and the tutor song in NCM and a downstream sensorimotor region, HVC, respectively. Taken together, these findings indicate that E2 plays a multifaceted role during development, and that, contrary to prediction, tutor song memorization is unimpaired by unilateral estrogen synthesis blockade in the auditory cortex.


Subject(s)
Aromatase/metabolism , Auditory Cortex/metabolism , Estradiol/metabolism , Finches/physiology , Learning/physiology , Neurons/physiology , Vocalization, Animal/physiology , Animals , Auditory Pathways , Behavior, Animal , Humans , Imitative Behavior , Male , Memory , Speech
16.
Horm Behav ; 121: 104713, 2020 05.
Article in English | MEDLINE | ID: mdl-32057821

ABSTRACT

Animals continually assess their environment for cues associated with threats, competitors, allies, mates or prey, and experience is crucial for those associations. The auditory cortex is important for these computations to enable valence assignment and associative learning. The caudomedial nidopallium (NCM) is part of the songbird auditory association cortex and it is implicated in juvenile song learning, song memorization, and song perception. Like human auditory cortex, NCM is a site of action of estradiol (E2) and is enriched with the enzyme aromatase (E2-synthase). However, it is unclear how E2 modulates auditory learning and perception in the vertebrate auditory cortex. In this study we employ a novel, auditory-dependent operant task governed by social reinforcement to test the hypothesis that neuro-E2 synthesis supports auditory learning in adult male zebra finches. We show that local suppression of aromatase activity in NCM disrupts auditory association learning. By contrast, post-learning performance is unaffected by either NCM aromatase blockade or NCM pharmacological inactivation, suggesting that NCM E2 production and even NCM itself are not required for post-learning auditory discrimination or memory retrieval. Therefore, neuroestrogen synthesis in auditory cortex supports the association between sounds and behaviorally relevant consequences.


Subject(s)
Association Learning/physiology , Auditory Cortex/metabolism , Auditory Perception/physiology , Estrogens/metabolism , Finches/physiology , Acoustic Stimulation , Animals , Auditory Cortex/physiology , Cognition/physiology , Conditioning, Operant/physiology , Estradiol/physiology , Finches/metabolism , Male , Memory/physiology , Neuroendocrine Cells/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Reinforcement, Social , Vocalization, Animal/physiology
17.
Horm Behav ; 121: 104716, 2020 05.
Article in English | MEDLINE | ID: mdl-32061616

ABSTRACT

Decades of work have established the brain as a source of steroid hormones, termed 'neurosteroids'. The neurosteroid neuroestradiol is produced in discrete brain areas and influences cognition, sensory processing, reproduction, neurotransmission, and disease. A prevailing research focus on neuroestradiol has essentially ignored whether its immediate synthesis precursor - the androgen testosterone - is also dynamically regulated within the brain. Testosterone itself can rapidly influence neurophysiology and behavior, and there is indirect evidence that the female brain may synthesize significant quantities of testosterone to regulate cognition, reproduction, and behavior. In songbirds, acoustic communication is regulated by neuroestrogens. Neuroestrogens are rapidly synthetized in the caudomedial nidopallium (NCM) of the auditory cortex of zebra finches in response to song and can influence auditory processing and song discrimination. Here, we examined the in vivo dynamics of NCM levels of the neuroestrogen synthesis precursor, testosterone. Unlike estradiol, testosterone did not appear to fluctuate in the female NCM during song exposure. However, a substantial song-induced elevation of testosterone was revealed in the left hemisphere NCM of females when local aromatization (i.e., conversion to estrogens) was locally blocked. This elevation was eliminated when local androgen synthesis was concomitantly blocked. Further, no parallel elevation was observed in the circulation in response to song playback, consistent with a local, neural origin of testosterone synthesis. To our knowledge, this study provides the first direct demonstration that testosterone fluctuates rapidly in the brain in response to socially-relevant environmental stimuli. Our findings suggest therefore that locally-derived 'neuroandrogens' can dynamically influence brain function and behavior. SIGNIFICANCE STATEMENT: This study demonstrates that androgen synthesis occurs rapidly in vivo in the brain in response to social cues, in a lateralized manner. Specifically, testosterone synthesis occurs within the left secondary auditory cortex when female zebra finches hear male song. Therefore, testosterone could act as a neuromodulator to rapidly shape sensory processing. Androgens have been linked to functions such as the control of female libido, and many steroidal drugs used for contraception, anti-cancer treatments, and sexual dysfunction likely influence the brain synthesis and action of testosterone. The current findings therefore establish a clear role for androgen synthesis in the female brain with implications for understanding neural circuit function and behavior in animals, including humans.


Subject(s)
Brain/metabolism , Finches/metabolism , Testosterone/metabolism , Acoustic Stimulation , Animals , Auditory Cortex/physiology , Auditory Perception/physiology , Estradiol/metabolism , Estrogens/metabolism , Female , Finches/physiology , Male , Sex Characteristics , Vocalization, Animal/physiology
18.
Article in English | MEDLINE | ID: mdl-31781892

ABSTRACT

Neuron-derived estrogens are synthesized by aromatase and act through membrane receptors to modulate neuronal physiology. In many systems, long-lasting hormone treatments can alter sensory-evoked neuronal activation. However, the significance of acute neuroestrogen production is less understood. Both sexes of zebra finches can synthesize estrogens rapidly in the auditory cortex, yet it is unclear how this modulates neuronal cell signaling. We examined whether acute estrogen synthesis blockade attenuates auditory-induced expression of early growth response 1 (Egr-1) in the auditory cortex of both sexes. cAMP response element-binding protein phosphorylation (pCREB) induction by song stimuli and acute estrogen synthesis was also examined. We administered the aromatase inhibitor fadrozole prior to song exposure and measured Egr-1 across several auditory regions. Fadrozole attenuated Egr-1 in the auditory cortex greater in males than females. Females had greater expression and clustering of aromatase cells than males in high vocal center (HVC) shelf. Auditory-induced Egr-1 expression exhibited a large sex difference following fadrozole treatment. We did not observe changes in pCREB expression with song presentation or aromatase blockade. These findings are consistent with the hypothesis that acute neuroestrogen synthesis can drive downstream transcriptional responses in several cortical auditory regions, and that this mechanism is more prominent in males.


Subject(s)
Auditory Cortex/physiology , Estrogen Antagonists/pharmacology , Estrogens/metabolism , Fadrozole/pharmacology , Finches/physiology , Neurons/metabolism , Vocalization, Animal/physiology , Animals , Auditory Cortex/drug effects , Auditory Cortex/metabolism , Auditory Pathways/physiology , Female , Finches/genetics , Finches/metabolism , Gene Expression Regulation , Genes, Immediate-Early , Male , Neurons/drug effects , Sex Factors , Vocalization, Animal/drug effects
19.
eNeuro ; 6(5)2019.
Article in English | MEDLINE | ID: mdl-31519696

ABSTRACT

Rodent dorsal medial prefrontal cortex (mPFC), typically prelimbic cortex, is often described as promoting actions such as reward seeking, whereas ventral mPFC, typically infralimbic cortex, is thought to promote response inhibition. However, both dorsal and ventral mPFC are necessary for both expression and suppression of different behaviors, and each region may contribute to different functions depending on the specifics of the behavior tested. To better understand the roles of dorsal and ventral mPFC in motivated behavior we pharmacologically inactivated each area during operant fixed ratio 1 (FR1) seeking for a natural reward (sucrose), extinction, cue-induced reinstatement, and progressive ratio (PR) sucrose seeking in male Long-Evans rats. Bilateral inactivation of dorsal mPFC, but not ventral mPFC increased reward seeking during FR1. Inactivation of both dorsal and ventral mPFC decreased seeking during extinction. Bilateral inactivation of ventral mPFC, but not dorsal mPFC decreased reward seeking during cue-induced reinstatement. No effect of inactivation was found during PR. Our data contrast sharply with observations seen during drug seeking and fear conditioning, indicating that previously established roles of dorsal mPFC = going versus ventral mPFC = stopping are not applicable to all motivated behaviors and/or outcomes. Our results indicate that dichotomous functions of dorsal versus ventral mPFC, if they exist, may align better with other models, or may require the development of a new framework in which these multifaceted brain areas play different roles in action control depending on the behavioral context in which they are engaged.


Subject(s)
Behavior, Addictive/psychology , Cues , Extinction, Psychological/physiology , Prefrontal Cortex/physiology , Reward , Sucrose/administration & dosage , Animals , Behavior, Addictive/chemically induced , Extinction, Psychological/drug effects , GABA Agonists/pharmacology , Male , Prefrontal Cortex/drug effects , Rats, Long-Evans , Self Administration
20.
J Neurosci ; 39(5): 918-928, 2019 01 30.
Article in English | MEDLINE | ID: mdl-30587540

ABSTRACT

Breast cancer patients using aromatase inhibitors (AIs) as an adjuvant therapy often report side effects, including hot flashes, mood changes, and cognitive impairment. Despite long-term use in humans, little is known about the effects of continuous AI administration on the brain and cognition. We used a primate model of human cognitive aging, the common marmoset, to examine the effects of a 4-week daily administration of the AI letrozole (20 µg, p.o.) on cognition, anxiety, thermoregulation, brain estrogen content, and hippocampal pyramidal cell physiology. Letrozole treatment was administered to both male and female marmosets and reduced peripheral levels of estradiol (E2), but unexpectedly increased E2 levels in the hippocampus. Spatial working memory and intrinsic excitability of hippocampal neurons were negatively affected by the treatment possibly due to increased hippocampal E2. While no changes in hypothalamic E2 were observed, thermoregulation was disrupted by letrozole in females only, indicating some impact on hypothalamic activity. These findings suggest adverse effects of AIs on the primate brain and call for new therapies that effectively prevent breast cancer recurrence while minimizing side effects that further compromise quality of life.SIGNIFICANCE STATEMENT Aromatase inhibitors (AIs) are used as an adjuvant therapy for estrogen-receptor-positive breast cancer and are associated with side effects, including hot flashes, depression/anxiety, and memory deficits severe enough for many women to discontinue this life-saving treatment. AIs are also used by men, yet sex differences in the reported side effects have not been systematically studied. We show that AI-treated male and female marmosets exhibit behavioral changes consistent with these CNS symptoms, as well as elevated hippocampal estradiol and compromised hippocampal physiology. These findings illustrate the need for (1) a greater understanding of the precise mechanisms by which AIs impact brain function and (2) the development of new treatment approaches for breast cancer patients that minimize adverse effects on the brain.


Subject(s)
Aromatase Inhibitors/adverse effects , Behavior, Animal/drug effects , Brain/drug effects , Letrozole/adverse effects , Animals , Anxiety/chemically induced , Anxiety/psychology , Body Temperature Regulation/drug effects , Brain Chemistry/drug effects , Callithrix , Cognition/drug effects , Estradiol/metabolism , Estrogens/metabolism , Hippocampus/cytology , Hippocampus/drug effects , Psychomotor Performance/drug effects , Pyramidal Cells/drug effects , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...