Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J BUON ; 26(4): 1683, 2021.
Article in English | MEDLINE | ID: mdl-34565034

ABSTRACT

PURPOSE: To determine the severity of the effects on VMAT dose calculations caused by varying statistical uncertainties (SU) per control point in a Monte Carlo based treatment planning system (TPS) and to assess the impact of the uncertainty during dose volume histogram (DVH) evaluation. METHODS: For this study, 13 archived patient plans were selected for recalculation. Treatment sites included prostate, lung, and head and neck. These plans were each recalculated five times with varying uncertainty levels using Elekta's Monaco Version 5.11.00 Monte Carlo Gold Standard XVMC dose calculation algorithm. The statistical uncertainty per control point ranged from 2 to 10% at intervals of 2%, while the grid spacing was set at 3 mm for all calculations. Indices defined by the RTOG describing conformity, coverage, and homogeneity were recorded for each recalculation. RESULTS: For all indices tested, one-way ANOVA tests failed to reject the null hypothesis that there is no significant difference between SU levels (p>0.05). Using the Bland-Altman analysis method, it was determined that we can expect the indices (with the exception of CIRTOG) to be within 1% of the lowest uncertainty calculation when calculating at 4% SU per control point. Beyond that, we can expect the indices to be within 3% of the lowest uncertainty calculation. CONCLUSION: Increasing the SU per control point exponentially decreased the amount of time required for dose calculations, while creating minimal observable differences in DVHs and isodose lines.


Subject(s)
Monte Carlo Method , Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated , Uncertainty , Algorithms , Humans , Radiotherapy Dosage
2.
J BUON ; 25(6): 2731-2736, 2020.
Article in English | MEDLINE | ID: mdl-33455120

ABSTRACT

PURPOSE: To compare the accuracy of two separate models when calculating dose distributions in patients undergoing stereotactic radiosurgery (SRS) treatment for brain cancer. METHODS: For this comparison, two dose calculation algorithms were evaluated on two different treatment planning systems (TPS): Elekta's Monaco Version 5.11.00 Monte Carlo Gold Standard XVMC algorithm and Brainlab's iPlan Pencil Beam algorithm. The DICOM files of 11 patients with a total of 19 targets were exported from iPlan and then imported into Monaco to be recalculated. Using the dose distributions of the original (pencil beam/PB) and recalculated (Monte Carlo/MC) plans, four indices for plan quality were evaluated: coverage (Q), conformity index (CIRTOG), homogeneity index (HI), and gradient index (GI). RESULTS: There was a significant difference in the CIRTOG and HI between the two TPS calculations. However, the magnitude of these differences is often not substantial enough to cause the plan to fall outside of RTOG protocol deviation limits. Only 3 of the 19 targets had CIRTOG values which moved to a new level of deviation, and these targets were unique in terms of size (<0.1 cm3). CONCLUSION: It was found that the difference between systems is often not enough to cause the plan to fall outside of RTOG protocol deviation limits. This is an indication that a PB-based treatment planning system is sufficient for the mostly homogeneous conditions of intracranial SRS planning when the target is larger than 0.1 cm3. If below 0.1 cm3, the prescribing physician may need to evaluate TPS differences.


Subject(s)
Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Monte Carlo Method , Radiosurgery/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...