Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 28(10): 1887-1891, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29655979

ABSTRACT

During the course of our research efforts to develop potent and selective AKT inhibitors, we discovered enatiomerically pure substituted dihydropyridopyrimidinones (DHP) as potent inhibitors of protein kinase B/AKT with excellent selectivity against ROCK2. A key challenge in this program was the poor physicochemical properties of the initial lead compound 5. Integration of structure-based drug design and physical properties-based design resulted in replacement of a highly hydrophobic poly fluorinated aryl ring by a simple trifluoromethyl that led to identification of compound 6 with much improved physicochemical properties. Subsequent SAR studies led to the synthesis of new pyran analog 7 with improved cell potency. Further optimization of pharmacokintetics properties by increasing permeability with appropriate fluorinated alkyl led to compound 8 as a potent, selective AKT inhibitors that blocks the phosphorylation of GSK3ß in vivo and had robust, dose and concentration dependent efficacy in the U87MG tumor xenograft model.


Subject(s)
Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrimidinones/chemistry , Animals , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Mice , Molecular Dynamics Simulation , Neoplasms/drug therapy , Neoplasms/pathology , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Structure, Tertiary , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidinones/pharmacology , Pyrimidinones/therapeutic use , Stereoisomerism , Structure-Activity Relationship , Transplantation, Heterologous
2.
Invest New Drugs ; 30(3): 936-49, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21360050

ABSTRACT

LY2457546 is a potent and orally bioavailable inhibitor of multiple receptor tyrosine kinases involved in angiogenic and tumorigenic signalling. In biochemical and cellular assays, LY2457546 demonstrates potent activity against targets that include VEGFR2 (KDR), PDGFRß, FLT-3, Tie-2 and members of the Eph family of receptors. With activities against both Tie2 and Eph receptors, LY2457546 possesses an activity profile that distinguishes it from multikinase inhibitors. When compared head to head with sunitinib, LY2457546 was more potent for inhibition of endothelial tube formation in an in vitro angiogenesis co-culture model with an intermittent treatment design. In vivo, LY2457546 inhibited VEGF-driven autophosphorylation of lung KDR in the mouse and rat in a dose and concentration dependent manner. LY2457546 was well tolerated and exhibited efficacy in a 13762 syngeneic rat mammary tumor model in both once and twice daily continuous dosing schedules and in mouse human tumor xenograft models of lung, colon, and prostate origin. Additionally, LY2457546 caused complete regression of well-established tumors in an acute myelogenous leukemia (AML) FLT3-ITD mutant xenograft tumor model. The observed efficacy that was displayed by LY2457546 in the AML FLT3-ITD mutant tumor model was superior to sunitinib when both were evaluated using equivalent doses normalized to in vivo inhibition of pKDR in mouse lung. LY2457546 was well tolerated in non-clinical toxicology studies conducted in rats and dogs. The majority of the toxicities observed were similar to those observed with other multi-targeted anti-angiogenic kinase inhibitors (MAKs) and included bone marrow hypocellularity, hair and skin depigmentation, cartilage dysplasia and lymphoid organ degeneration and necrosis. Thus, the unique spectrum of target activity, potent in vivo anti-tumor efficacy in a variety of rodent and human solid tumor models, exquisite potency against a clinically relevant model of AML, and non-clinical safety profile justify the advancement of LY2457546 into clinical testing.


Subject(s)
Acetanilides/therapeutic use , Angiogenesis Inhibitors/therapeutic use , Neoplasms, Experimental/drug therapy , Protein Kinase Inhibitors/therapeutic use , Pyridines/therapeutic use , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Acetanilides/chemical synthesis , Acetanilides/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/pharmacology , Animals , CHO Cells , Cell Line, Tumor , Cricetinae , Cricetulus , Dogs , Female , Human Umbilical Vein Endothelial Cells , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Nude , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Xenograft Model Antitumor Assays , fms-Like Tyrosine Kinase 3/genetics
SELECTION OF CITATIONS
SEARCH DETAIL