Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Biochem Sci ; 47(8): 673-688, 2022 08.
Article in English | MEDLINE | ID: mdl-35487808

ABSTRACT

Rapid phenotypic antimicrobial susceptibility testing (AST) requires the enrichment of live bacteria from patient samples, which is particularly challenging in the context of life-threatening bloodstream infections (BSIs) due to low bacterial titers. Over two decades, an extensive array of pathogen-specific biomolecules has been identified to capture live bacteria. The prevailing biomolecules are immune proteins of the complement system, antibodies, aptamers, phage proteins, and antimicrobial peptides. These biomolecules differ by their binder generation technologies and exhibit highly variable specificities, ranging from bacterial strains to most pathogenic bacteria. Here, we summarize how these diverse biomolecules were identified, list examples of successfully reported capture assays, and provide an outlook on the use of nanobodies raised against conserved surface-accessible proteins as promising biomolecules for pathogen capture.


Subject(s)
Bacteria , Bacteriophages , Humans
2.
Cell Rep ; 38(5): 110303, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35108544

ABSTRACT

Across the animal kingdom, multivalency discriminates antibodies from all other immunoglobulin superfamily members. The evolutionary forces conserving multivalency above other structural hallmarks of antibodies remain, however, incompletely defined. Here, we engineer monovalent either Fc-competent or -deficient antibody formats to investigate mechanisms of protection of neutralizing antibodies (nAbs) and non-neutralizing antibodies (nnAbs) in virus-infected mice. Antibody bivalency enables the tethering of virions to the infected cell surface, inhibits the release of virions in cell culture, and suppresses viral loads in vivo independently of Fc gamma receptor (FcγR) interactions. In return, monovalent antibody formats either do not inhibit virion release and fail to protect in vivo or their protective efficacy is largely FcγR dependent. Protection in mice correlates with virus-release-inhibiting activity of nAb and nnAb rather than with their neutralizing capacity. These observations provide mechanistic insights into the evolutionary conservation of antibody bivalency and help refining correlates of nnAb protection for vaccine development.


Subject(s)
Antibodies, Viral/pharmacology , Antiviral Agents/pharmacology , HIV Antibodies/pharmacology , Receptors, Fc/drug effects , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , Epitopes/drug effects , Epitopes/immunology , HIV Antibodies/immunology , Immunoglobulin G/drug effects , Immunoglobulin G/immunology , Mice, Inbred C57BL , Receptors, IgG/drug effects , Receptors, IgG/immunology
3.
Microorganisms ; 9(3)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803310

ABSTRACT

Arenaviruses such as Lassa virus cause arenavirus hemorrhagic fever (AVHF), but protective vaccines and effective antiviral therapy remain unmet medical needs. Our prior work has revealed that inducible nitric oxide synthase (iNOS) induction by IFN-γ represents a key pathway to microvascular leak and terminal shock in AVHF. Here we hypothesized that Ruxolitinib, an FDA-approved JAK inhibitor known to prevent IFN-γ signaling, could be repurposed for host-directed therapy in AVHF. We tested the efficacy of Ruxolitinib in MHC-humanized (HHD) mice, which develop Lassa fever-like disease upon infection with the monkey-pathogenic lymphocytic choriomeningitis virus strain WE. Anti-TNF antibody therapy was tested as an alternative strategy owing to its expected effect on macrophage activation. Ruxolitinib but not anti-TNF antibody prevented hypothermia and terminal disease as well as pleural effusions and skin edema, which served as readouts of microvascular leak. As expected, neither treatment influenced viral loads. Intriguingly, however, and despite its potent disease-modifying activity, Ruxolitinib did not measurably interfere with iNOS expression or systemic NO metabolite levels. These findings suggest that the FDA-approved JAK-inhibitor Ruxolitinib has potential in the treatment of AVHF. Moreover, our observations indicate that besides IFN-γ-induced iNOS additional druggable pathways contribute essentially to AVHF and are amenable to host-directed therapy.

4.
Cell Host Microbe ; 22(3): 354-365.e5, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28826838

ABSTRACT

Arenaviruses such as Lassa virus (LASV) cause hemorrhagic fever. Terminal shock is associated with a systemic cytokine storm, but the mechanisms are ill defined. Here we used HLA-A2-expressing mice infected with a monkey-pathogenic strain of lymphocytic choriomeningitis virus (LCMV-WE), a close relative of LASV, to investigate the pathophysiology of arenavirus hemorrhagic fever (AHF). AHF manifested as pleural effusions, edematous skin swelling, and serum albumin loss, culminating in hypovolemic shock. A characteristic cytokine storm included numerous pro-inflammatory cytokines and nitric oxide (NO) metabolites. Edema formation and terminal shock were abrogated in mice lacking inducible nitric oxide synthase (iNOS), although the cytokine storm persisted. iNOS was upregulated in the liver in a T cell- and interferon-γ (IFN-γ)-dependent fashion. Accordingly, blockade of IFN-γ or depletion of T cells repressed hepatic iNOS and prevented disease despite unchecked high-level viremia. We identify the IFN-γ-iNOS axis as an essential and potentially druggable molecular pathway to AHF-induced shock.


Subject(s)
Hemorrhagic Fevers, Viral/immunology , Interferon-gamma/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/physiology , Nitric Oxide Synthase Type II/immunology , Animals , Disease Models, Animal , Female , Hemorrhagic Fevers, Viral/genetics , Hemorrhagic Fevers, Viral/virology , Humans , Interferon-gamma/genetics , Lymphocytic Choriomeningitis/genetics , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/genetics , Male , Mice , Mice, Inbred C57BL , Nitric Oxide/immunology , Nitric Oxide Synthase Type II/genetics
5.
PLoS Pathog ; 11(11): e1005276, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26587982

ABSTRACT

Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein's globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Arenavirus/immunology , Hemorrhagic Fevers, Viral/immunology , Polysaccharides/immunology , Animals , HIV Antibodies/immunology , HIV-1/immunology , Humans , Mice, Inbred C57BL , Molecular Sequence Data
6.
Inflamm Allergy Drug Targets ; 13(4): 262-74, 2014.
Article in English | MEDLINE | ID: mdl-25163973

ABSTRACT

Dengue fever is a mosquito-borne viral disease infecting several hundred million people in tropical and subtropical areas every year. Its clinical manifestations range from mild fever to severe life-threatening shock syndrom. No therapeutics or licensed vaccines are available yet and with half of the world's population already at risk, it represents a major public health concern. The co-existence of four different Dengue virus serotypes renders difficult the obtaining of full protective immunity against each one of them. On the contrary, these serotypes trigger significant cross-reactivities of antibodies and T cells, both of which may lead to disease enhancement when reactivated in the context of reinfection with a heterologous serotype. Several immunological concepts have been developed to explain disease enhancement, and the uncertainty around the topic has consequently slowed down the development of Dengue vaccines. Recent advances however have shed light on key aspects of both the immunoprotective and immunopathological mechanisms. In particular the responses of specific antibodies and T cells have been a focus of many studies. These immunological players are thought to directly influence a cytokine dysbalance that eventually leads to severe disease and vascular leakage. In this review I outline current concepts and ongoing debates on the above topics. A better understanding of Dengue virus immunopathogenesis is critically needed to optimize candidate vaccines including those currently under development. In particular, the results from large-scale human efficacy trials will offer outstanding opportunities to refine correlates of protection and design even more effective vaccines.


Subject(s)
Dengue Vaccines/immunology , Dengue/immunology , Animals , Cytokines/immunology , Dengue Virus/immunology , Humans , T-Lymphocytes/immunology , Vaccination/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...