Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 198
Filter
1.
J Mater Chem B ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39290132

ABSTRACT

The scarcity of the antifungal drug arsenal highlights an urgent need to develop alternative treatments for candidiasis caused by Candida albicans (C. albicans). As pH is closely associated with C. albicans infection, it could be an essential target in a novel approach for designing antifungal therapy. In this study, a novel intelligent antifungal monomer, dodecylmethylaminoethyl methacrylate (DMAEM), with a pH-responsive tertiary amine group and a methacrylate-derived CC double bond group is developed. It is uncovered that the two functional groups of DMAEM contribute to a dual mode of action. Under acidic pH, the tertiary amine of DMAEM protonates into a cationic fungicide, sharing similar structural and functional characteristics with quaternary ammonium salts, which exerts fungicidal activity by targeting the CHK1 two-component system in C. albicans. At neutral pH, the methacrylate-derived CC double bond group contributes to anti-virulence activity by blocking hyphal formation. In addition, it is also identified that DMAEM suppresses filamentation by altering the extracellular vesicles of C. albicans. These findings support that the novel intelligent pH-responsive monomer could be a therapeutic candidate for treating candidiasis.

2.
Dent Mater ; 40(10): 1658-1668, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39089903

ABSTRACT

OBJECTIVES: Considering the correlation between survival microenvironment of E. faecalis and acidic pH value, this study aimed to investigate the potential of utilizing pH-responsive DMAEM monomers and their copolymers with resin-based root canal sealers to inhibit E. faecalis. METHODS: Broth microdilution assay, crystal violet staining and qPCR were performed to evaluate antibacterial effects of DMAEM monomers against E. faecalis at different pH. Methacrylate-resin based root canal sealers were prepared and copolymerized with DMAEM. The flow, solubility, water sorption, apical sealing ability and cytotoxicity of sealers were investigated to optimize formulation. The anti-E. faecalis effects of DMAEM copolymers with sealers were evaluated by direct contact test, colony-forming unit counting and live/dead staining. RESULTS: DMAEM monomers inhibited the growth, biofilm formation and virulence factors expression of E. faecalis in a concentration- and pH-dependent manner. Incorporation of 1.25 % and 2.5 % DMAEM into experimental sealers would not affect the flowability, solubility and periapical sealing ability (P > 0.05), but increased the water sorption of sealers (P < 0.01). Cells viability was higher than 90 % in both 1.25 % and 2.5 % DMAEM groups at pH 7.0. DMAEM copolymers with sealers reduced E. faecalis counts, inhibited biofilm formation and decreased live cells within the biofilm in response to pH values. SIGNIFICANCE: DMAEM monomers and their copolymers with resin-based sealers possessed antibacterial and antibiofilm effects on E. faecalis in response to pH values. DMAEM is promising to inhibit intraradicular E. faecalis in response to its acidic survival environment and maintain low cytotoxicity under neutral conditions, ensuring their biosafety in case of inadvertent entry into periapical tissues.


Subject(s)
Biofilms , Enterococcus faecalis , Methacrylates , Root Canal Filling Materials , Enterococcus faecalis/drug effects , Hydrogen-Ion Concentration , Methacrylates/pharmacology , Methacrylates/chemistry , Biofilms/drug effects , Root Canal Filling Materials/pharmacology , Root Canal Filling Materials/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Materials Testing , Solubility
3.
Cancer Res ; 84(19): 3189-3206, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38959336

ABSTRACT

Developing effective treatments for patients with head and neck squamous cell carcinoma (HNSCC) is a significant challenge. Cetuximab, a first-line targeted therapy for HNSCC, exhibits limited efficacy. Here, we used pooled CRISPR screening to find targets that can synergize with cetuximab and identified CD47 as the leading candidate. Rather than inhibiting cancer cell proliferation, CD47 inhibition promoted cetuximab-triggered antibody-dependent cellular phagocytosis (ADCP), thereby enhancing macrophage-mediated cancer cell removal. The combination of CD47-signal-regulatory protein α (SIRPα) blockade and cetuximab demonstrated strong anticancer activity in vivo. In addition to blocking the phagocytosis checkpoint, CD47-SIRPα inhibition upregulated CD11b/CD18 on the surface of macrophages, which accelerated intercellular adhesion between macrophages and cancer cells to enhance subsequent phagocytosis. Inhibition of the interaction between macrophage CD11b/CD18 and cancer cell intercellular adhesion molecule-1 (ICAM1) eliminated the intercellular adhesion and phagocytosis induced by CD47-SIRPα blockade. Thus, CD47-SIRPα blockade enhances ADCP through CD11b/CD18-ICAM1-mediated intercellular adhesion and sensitizes HNSCC to cetuximab. Significance: CD47-SIRPα blockade increases surface CD11b/CD18 on macrophages to enhance adhesion to cancer cells, resulting in robust synergistic phagocytosis in combination with cetuximab treatment in head and neck squamous cell carcinoma.


Subject(s)
CD47 Antigen , Cell Adhesion , Cetuximab , Head and Neck Neoplasms , Macrophages , Phagocytosis , Receptors, Immunologic , Squamous Cell Carcinoma of Head and Neck , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/metabolism , Humans , Cetuximab/pharmacology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/immunology , Mice , Animals , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/antagonists & inhibitors , Phagocytosis/drug effects , Cell Adhesion/drug effects , Antigens, Differentiation/metabolism , Antineoplastic Agents, Immunological/pharmacology , Cell Line, Tumor , Xenograft Model Antitumor Assays , CD18 Antigens/metabolism , Female , Mice, Nude , Intercellular Adhesion Molecule-1/metabolism , CD11b Antigen/metabolism , Cell Proliferation/drug effects
4.
Front Immunol ; 15: 1422440, 2024.
Article in English | MEDLINE | ID: mdl-39050841

ABSTRACT

Background: NETs, a unique neutrophil immune mechanism, are vital in defending against microbial invasions. Understanding the mechanisms of co-infection by Candida albicans and Staphylococcus aureus, which often leads to higher mortality and poorer prognosis, is crucial for studying infection progression. Methods: In our study, we established a mouse model of subcutaneous infection to characterize the inflammation induced by co-infection. By purifying and extracting NETs to interact with microorganisms, we delve into the differences in their interactions with various microbial species. Additionally, we investigated the differences in NETs production by neutrophils in response to single or mixed microorganisms through the interaction between neutrophils and these microorganisms. Furthermore, we analyzed the gene expression differences during co-infection using transcriptomics. Results: In vivo, C. albicans infections tend to aggregate, while S. aureus infections are more diffuse. In cases of co-infection, S. aureus adheres to and wraps C. albicans. NETs exhibit strong killing capability against C. albicans but weaker efficacy against S. aureus. When NETs interact with mixed microorganisms, they preferentially target and kill the outer layer of S. aureus. In the early stages, neutrophils primarily rely on phagocytosis to kill S. aureus, but as the bacteria accumulate, they stimulate neutrophils to produce NETs. Interestingly, in the presence of neutrophils, S. aureus promotes the proliferation and hyphal growth of C. albicans. Conclusion: Our research has showed substantial differences in the progression of co-infections compared to single-microbial infections, thereby providing scientific evidence for NETs as potential therapeutic targets in the treatment of co-infections.


Subject(s)
Candida albicans , Candidiasis , Coinfection , Extracellular Traps , Neutrophils , Staphylococcal Infections , Staphylococcus aureus , Candida albicans/immunology , Animals , Extracellular Traps/immunology , Staphylococcus aureus/immunology , Neutrophils/immunology , Mice , Coinfection/immunology , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Candidiasis/immunology , Candidiasis/microbiology , Disease Models, Animal , Phagocytosis/immunology , Female , Mice, Inbred C57BL , Immune Evasion
5.
J Dent ; 148: 105138, 2024 09.
Article in English | MEDLINE | ID: mdl-38906455

ABSTRACT

OBJECTIVES: Recent research indicated that fungi might have a role in periodontitis alongside traditional periodontal pathogens. This state-of-the-art narrative review explores current concepts on the involvement of Candida species in periodontitis, and suggests the potential for ecological management of this disease. DATA, SOURCES AND STUDY SELECTION: A literature search was conducted for a narrative review on Web of Science, PubMed, Medline and Scopus about periodontitis associated with Candida species. Published articles, including case reports, case series, observational and interventional clinical trials, and critical appraisals of the literature were retrieved and reviewed. CONCLUSIONS: Several factors predispose individuals to periodontitis associated with Candida species. These include systemic diseases that lead to immunosuppression and oral environment changes such as cigarette smoking. While a consistent significant increase in the detection rate of Candida species in patients with periodontitis has not been universally observed, there is evidence linking Candida species to the severity of periodontitis and their potential to worsen the condition. Candida species may participate in the development of periodontitis in various ways, including cross-kingdom interactions with periodontal pathogens, changes in the local or systemic environment favoring the virulence of Candida species, and interactions between Candida-bacteria and host immunity. CLINICAL SIGNIFICANCE: Mechanical plaque control is the most common treatment for periodontitis, but its effectiveness may be limited, particularly when dealing with systemic risk factors. Understanding the specific role of Candida in periodontitis illuminates innovative approaches for managing the ecological balance in periodontal health.


Subject(s)
Candida , Periodontitis , Humans , Candida/classification , Candida/pathogenicity , Periodontitis/microbiology , Risk Factors , Candidiasis, Oral/microbiology
6.
Oral Oncol ; 154: 106867, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797001

ABSTRACT

OBJECTIVE: To investigate the short-term efficacy and safety of induction chemotherapy (IC) combined with anti-PD-1 immunotherapy in locoregionally advanced nasopharyngeal carcinoma (LA-NPC). METHODS: A total of 217 patients diagnosed with LA-NPC at the First Affiliated Hospital of Nanchang University, including 67 who received IC combined with anti-PD-1 and 150 who received IC, were retrospectively enrolled. Efficacy was evaluated at the end of the IC cycles and one month after radiotherapy based on RECIST v1.1 criteria. Acute toxicities were graded based on the CTCAE v5.0 criteria. Quantitative variables were compared by unpaired t-tests, and categorical variables were evaluated by Fisher Freeman-Halton test or Pearson Chi-square test. RESULTS: At the end of all induction therapy cycles, the objective response rate (ORR) of the IC + anti-PD-1 group was 88.1 % (59/67) as opposed to 70.0 % (105/150) in the IC group. Subgroup analysis showed that patients in both stage Ⅲ and ⅣA achieved a significant improvement in ORR with the inclusion of anti-PD-1 therapy. Patients with T3-4 or N2-3 category appeared to benefit more from anti-PD-1 compared to patients with T1-2 or N0-1 category. However, neither ORR nor the complete response (CR) rate was significantly different between the two treatment groups one month after the end of radiotherapy. In addition, the frequency of Grade 3-4 adverse events were also similar in both groups. CONCLUSIONS: IC combined with anti-PD-1 immunotherapy significantly improved the ORR of LA-NPC patients after induction therapy compared to IC alone.


Subject(s)
Induction Chemotherapy , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Programmed Cell Death 1 Receptor , Humans , Male , Female , Middle Aged , Retrospective Studies , Induction Chemotherapy/methods , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/therapy , Adult , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/therapy , Nasopharyngeal Neoplasms/pathology , Aged , Immune Checkpoint Inhibitors/therapeutic use , Treatment Outcome , Young Adult
7.
Appl Microbiol Biotechnol ; 108(1): 244, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421461

ABSTRACT

Candida albicans, one of the most prevalent conditional pathogenic fungi, can cause local superficial infections and lethal systemic infections, especially in the immunocompromised population. Secretory immunoglobulin A (sIgA) is an important immune protein regulating the pathogenicity of C. albicans. However, the actions and mechanisms that sIgA exerts directly against C. albicans are still unclear. Here, we investigated that sIgA directs against C. albicans hyphal growth and virulence to oral epithelial cells. Our results indicated that sIgA significantly inhibited C. albicans hyphal growth, adhesion, and damage to oral epithelial cells compared with IgG. According to the transcriptome and RT-PCR analysis, sIgA significantly affected the ergosterol biosynthesis pathway. Furthermore, sIgA significantly reduced the ergosterol levels, while the addition of exogenous ergosterol restored C. albicans hyphal growth and adhesion to oral epithelial cells, indicating that sIgA suppressed the growth of hyphae and the pathogenicity of C. albicans by reducing its ergosterol levels. By employing the key genes mutants (erg11Δ/Δ, erg3Δ/Δ, and erg3Δ/Δ erg11Δ/Δ) from the ergosterol pathway, sIgA lost the hyphal inhibition on these mutants, while sIgA also reduced the inhibitory effects of erg11Δ/Δ and erg3Δ/Δ and lost the inhibition of erg3Δ/Δ erg11Δ/Δ on the adhesion to oral epithelial cells, further proving the hyphal repression of sIgA through the ergosterol pathway. We demonstrated for the first time that sIgA inhibited C. albicans hyphal development and virulence by affecting ergosterol biosynthesis and suggest that ergosterol is a crucial regulator of C. albicans-host cell interactions. KEY POINTS: • sIgA repressed C. albicans hyphal growth • sIgA inhibited C. albicans virulence to host cells • sIgA affected C. albicans hyphae and virulence by reducing its ergosterol levels.


Subject(s)
Candida albicans , Epithelial Cells , Virulence , Candida albicans/genetics , Ergosterol , Immunoglobulin A, Secretory
8.
Br J Pharmacol ; 181(12): 1857-1873, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38382564

ABSTRACT

BACKGROUND AND PURPOSE: The holotoxin A1, isolated from Apostichopus japonicus, exhibits potent antifungal activities, but the mechanism and efficacy against candidiasis are unclear. In this study we have studied the antifungal effects and mechanism of holotoxin A1 against Candida albicans and in murine oropharyngeal and intra-abdominal candidiasis. EXPERIMENTAL APPROACH: The antifungal effect of holotoxin A1 against C. albicans was tested in vitro. To explore the antifungal mechanism of holotoxin A1, the transcriptome, ROS levels, and mitochondrial function of C. albicans was evaluated. Effectiveness and systematic toxicity of holotoxin A1 in vivo was assessed in the oropharyngeal and intra-abdominal candidiasis models in mice. KEY RESULTS: Holotoxin A1 was a potent fungicide against C. albicans SC5314, clinical strains and drug-resistant strains. Holotoxin A1 inhibited oxidative phosphorylation and induced oxidative damage by increasing intracellular accumulation of ROS in C. albicans. Holotoxin A1 induced dysfunction of mitochondria by depolarizing the mitochondrial membrane potential and reducing the production of ATP. Holotoxin A1 directly inhibited the enzymatic activity of mitochondrial complex I and antagonized with the rotenone, an inhibitor of complex I, against C. albicans. Meanwhile, the complex I subunit NDH51 null mutants showed a decreased susceptibility to holotoxin A1. Furthermore, holotoxin A1 significantly reduced fungal burden and infections with no significant systemic toxicity in oropharyngeal and intra-abdominal candidiasis in murine models. CONCLUSION AND IMPLICATIONS: Holotoxin A1 is a promising candidate for the development of novel antifungal agents against both oropharyngeal and intra-abdominal candidiasis, especially when caused by drug-resistant strains.


Subject(s)
Antifungal Agents , Candida albicans , Oxidative Stress , Reactive Oxygen Species , Animals , Female , Mice , Antifungal Agents/pharmacology , Candida albicans/drug effects , Candidiasis/drug therapy , Candidiasis/microbiology , Candidiasis, Oral/drug therapy , Candidiasis, Oral/microbiology , Intraabdominal Infections/drug therapy , Intraabdominal Infections/microbiology , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred BALB C , Microbial Sensitivity Tests , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Stichopus/microbiology
9.
J Med Chem ; 67(2): 1044-1060, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38173250

ABSTRACT

Antimicrobial peptides (AMPs) offer an opportunity to overcome multidrug resistance. Here, novel peptides were designed based on AMP fragments derived from sea cucumber hemolytic lectin to enhance anti-methicillin-resistant Staphylococcus aureus (MRSA) activity with less side effects. Two designed peptides, CGS19 (LARVARRVIRFIRRAW-NH2) and CGS20 (RRRLARRLIFFIRRAW-NH2), exhibited strong antibacterial activities against clinically isolated MRSA with MICs of 3-6 µM, but no obvious cytotoxicity was observed. Consistently, CGS19 and CGS20 exerted rapid bactericidal activity and effectively induced 5.9 and 5.8 log reduction of MRSA counts in mouse subeschar, respectively. Further, CGS19 and CGS20 kill bacteria not only through disturbing membrane integrity but also by binding formate-tetrahydrofolate ligase, a key enzyme in the folate metabolism pathway, thereby inhibiting the folate pathway of MRSA. CGS19 and CGS20 are promising lead candidates for drug development against MRSA infection. The dual mechanisms on the identical peptide sequence or scaffold might be an underappreciated manner of treating life-threatening pathogens.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Mice , Animals , Anti-Bacterial Agents/pharmacology , Peptides/pharmacology , Microbial Sensitivity Tests , Amino Acid Sequence
10.
Int J Oral Sci ; 16(1): 2, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195684

ABSTRACT

The human oral microbiome harbors one of the most diverse microbial communities in the human body, playing critical roles in oral and systemic health. Recent technological innovations are propelling the characterization and manipulation of oral microbiota. High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes. New long-read platforms improve genome assembly from complex samples. Single-cell genomics provides insights into uncultured taxa. Advanced imaging modalities including fluorescence, mass spectrometry, and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution. Fluorescence techniques link phylogenetic identity with localization. Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification. Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches. Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly, gene expression, metabolites, microenvironments, virulence mechanisms, and microbe-host interfaces in the context of health and disease. However, significant knowledge gaps persist regarding community origins, developmental trajectories, homeostasis versus dysbiosis triggers, functional biomarkers, and strategies to deliberately reshape the oral microbiome for therapeutic benefit. The convergence of sequencing, imaging, cultureomics, synthetic systems, and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict, prevent, diagnose, and treat associated oral diseases.


Subject(s)
Biomimetics , Dysbiosis , Humans , Phylogeny , Homeostasis , Mass Spectrometry
11.
J Sep Sci ; 47(1): e2300550, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38066382

ABSTRACT

Valeriana jatamansi Jones is a commonly used traditional Chinese medicine, boasting rich effective compositions with versatile chemical structures and wide polarity, including iridoids, chlorogenic acid, and flavonoids. Previous reports indicate that conventional high-performance liquid chromatography (HPLC) analytical methods have proven inefficient performance in comprehensively characterizing components in Valeriana jatamansi. In the present study, a hybrid online analytical platform combining supercritical fluid extraction with both conventional HPLC separation (reverse phase) and supercritical fluid chromatography (normal phase) has been established and validated. This system can provide online extraction with two different chromatographic separation modes to increase separation ability and has been connected to a mass spectrometer to acquire high-resolution mass spectrometry data. Then, the online platform was applied to screening components in Valeriana jatamansi. A total of 117 compounds were identified, including five lignans, 18 organic acids, six flavonoids, and 88 iridoids. Thirty-three compounds were reported from Valeriana jatamansi for the first time. These results enrich our understanding of the components of Valeriana jatamansi and prove that the developed online platform in this study is a robust approach for accelerating working efficiency in comprehensively analyzing complicated samples.


Subject(s)
Chromatography, Supercritical Fluid , Valerian , Valerian/chemistry , Chromatography, High Pressure Liquid , Mass Spectrometry , Iridoids/analysis , Flavonoids/analysis
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1035999

ABSTRACT

@#Oral health is an integral component of overall well-being, with the oral cavity serving as a channel for external communication and expression of emotions such as stress and pessimism. Oral diseases can intensify feelings of depression, whereas depression can worsen oral health conditions. As a crucial part of the human microbiome, an imbalance in oral microbiota can release oral pathogenic microbes, which, through pathways including the circulation, nervous, and immune systems, can reach the brain and significantly affect the central nervous system. This can lead to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, further intensifying the development of depression. Similarly, an imbalance in oral microbiota in individuals with depression can intensify the occurrence of oral diseases. The relationship between depression and oral diseases is not isolated but rather a complex interplay in which they mutually influence and act as causative factors. To elucidate the causal relationship between oral diseases and depression and devise strategies for the prevention and treatment of both conditions, we explore the interaction mechanisms between oral diseases and depression from the perspective of oral microbiota. The occurrence of dental caries, periapical periodontitis, and periodontal diseases is closely associated with the excessive proliferation of specific bacteria in the oral cavity, such as Streptococcus mutans, Porphyromonas gingivalis, and Fusobacterium nucleatum. These bacteria can directly invade the brain through the compromised blood-brain barrier, activating pro-inflammatory cytokines and worsening depressive symptoms. Inflammatory conditions and ulcers in the oral mucosa are caused by various factors, including infection and immune abnormalities. Because of compromised immune function in individuals with depression, these inflammatory responses are often more severe and difficult to control. Malocclusion, trigeminal neuralgia, and temporomandibular joint disorders increase the risk of depression because of psychological stress and changes in the immune system. We also outline the diagnostic and therapeutic considerations for oral diseases in patients with depression, emphasizing the importance of early intervention for disease management. Future research will explore the therapeutic potential of oral microbiota in individuals with depression, with the aim to improve symptoms and treatment outcomes by adjusting oral microbiota, thus providing novel avenues for the prevention and treatment of depression.

13.
J Adv Res ; 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38160707

ABSTRACT

BACKGROUND: Helicobacter pylori (H. pylori), the only bacterium classified as a type I (definite) carcinogen, is strongly associated with the development of gastric inflammation and adenocarcinoma. It infects the stomach of approximately half of the global population, equivalent to nearly 4.4 billion people. However, due to physiological barriers in the stomach, microbial barriers and increased antibiotic resistance, the therapeutic efficiency of standard antibiotic therapy is limited and cannot meet the clinical needs in some areas. Combining stimulus-responsive biomaterials with certain stimuli is an emerging antibacterial strategy. Stimulus-responsive biomaterials can respond to chemical, biological or physical cues in the environment with corresponding changes in their own properties and functions, highlighting a more intelligent, targeting and efficient aspect for H. pylori therapy. AIM OF REVIEW: This review describes the critical obstacles in the current treatment of H. pylori, summarizes the recent advances in stimulus-responsive biomaterials against H. pylori by elucidating their working mechanisms and antibacterial performances under different types of stimuli (pH, enzymes, light, magnetic and ultrasound irradiations), and attempts to analyze the future prospects of such smart biomaterial for H. pylori eradication. Key Scientific Concepts of Review: Any characteristic property or change in the biomilieu at the H. pylori infected site (endogenous stimuli) or specific iatrogenic conditions in vitro (exogenous stimuli) can act as cues to activate or potentiate the antibacterial activity of responsive biomaterials. The responsiveness of these materials to endogenous stimuli enhances antimicrobial targeting, and makes physiological barriers that would otherwise hinder conventional H. pylori therapies a key factor in facilitating antibacterial effects. The responsiveness to exogenous stimuli greatly prolongs the action time of antimicrobial materials and pinpoints the site of infection, thereby reducing toxic side effects. These findings pave the way for the development of more precise and effective anti-H. pylori treatment.

14.
Int J Mol Sci ; 24(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37686449

ABSTRACT

Oral cavity is an essential reservoir for H. pylori. We aimed to investigate the antibacterial effects of dimethylaminododecyl methacrylate (DMADDM) against H. pylori. Modified giomers were prepared by introducing 0%, 1.25% and 2.5% DMADDM monomers. Broth microdilution assay, spot assay, Alamer Blue assay, PMA-qPCR, crystal violet staining, scanning electron microscopy observation and live/dead bacterial staining were performed to evaluate the antibacterial and antibiofilm effects of DMADDM and modified giomers in vitro. Urease assay, qPCR, hematoxylin-eosin staining and ELISA were performed to evaluate the inflammation levels and colonization of H. pylori in vivo. In vitro experiments indicated that the minimum inhibitory concentration and minimum bactericidal concentration of DMADDM were 6.25 µg/mL and 25 µg/mL, respectively. It inhibited H. pylori in a dose- and time-dependent manner, and significantly reduced the expression of cagA, vacA, flaA and ureB. DMADDM-modified giomers inhibited the formation of H. pylori biofilm and reduced live cells within it. In vivo experiments confirmed that the pretreatment with DMADDM-modified dental resin effectively reduced the gastric colonization of oral-derived H. pylori, suppressed systemic and local gastric inflammation. DMADDM monomers and DMADDM-modified giomers possessed excellent antibacterial and antibiofilm effects on H. pylori. Pretreatment with DMADDM-modified giomers significantly inhibited the gastric infection by H. pylori.


Subject(s)
Helicobacter pylori , Humans , Anti-Bacterial Agents/pharmacology , Inflammation , Dental Materials
15.
Sci Signal ; 16(801): eadg1849, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37669396

ABSTRACT

In eukaryotes, lactate produced during glycolysis is involved in regulating multiple metabolic processes through lysine lactylation (Kla). To explore the potential link between metabolism and Kla in prokaryotes, we investigated the distribution of Kla in the cariogenic bacterium Streptococcus mutans during planktonic growth in low-sugar conditions and in biofilm-promoting, high-sugar conditions. We identified 1869 Kla sites in 469 proteins under these two conditions, with the biofilm growth state showing a greater number of lactylated sites and proteins. Although high sugar increased Kla globally, it reduced lactylation of RNA polymerase subunit α (RpoA) at Lys173. Lactylation at this residue inhibited the synthesis of extracellular polysaccharides, a major constituent of the cariogenic biofilm. The Gcn5-related N-acetyltransferase (GNAT) superfamily enzyme GNAT13 exhibited lysine lactyltransferase activity in cells and lactylated Lys173 in RpoA in vitro. Either GNAT13 overexpression or lactylation of Lys173 in RpoA inhibited biofilm formation. These results provide an overview of the distribution and potential functions of Kla and improve our understanding of the role of lactate in the metabolic regulation of prokaryotes.


Subject(s)
Lysine , Streptococcus mutans , Biofilms , Glycolysis , Lactic Acid , Sugars
16.
Int J Oral Sci ; 15(1): 40, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37699886

ABSTRACT

Candida albicans is the most abundant fungal species in oral cavity. As a smart opportunistic pathogen, it increases the virulence by switching its forms from yeasts to hyphae and becomes the major pathogenic agent for oral candidiasis. However, the overuse of current clinical antifungals and lack of new types of drugs highlight the challenges in the antifungal treatments because of the drug resistance and side effects. Anti-virulence strategy is proved as a practical way to develop new types of anti-infective drugs. Here, seven artemisinins, including artemisinin, dihydroartemisinin, artemisinic acid, dihydroartemisinic acid, artesunate, artemether and arteether, were employed to target at the hyphal development, the most important virulence factor of C. albicans. Artemisinins failed to affect the growth, but significantly inhibited the hyphal development of C. albicans, including the clinical azole resistant isolates, and reduced their damage to oral epithelial cells, while arteether showed the strongest activities. The transcriptome suggested that arteether could affect the energy metabolism of C. albicans. Seven artemisinins were then proved to significantly inhibit the productions of ATP and cAMP, while reduced the hyphal inhibition on RAS1 overexpression strain indicating that artemisinins regulated the Ras1-cAMP-Efg1 pathway to inhibit the hyphal development. Importantly, arteether significantly inhibited the fungal burden and infections with no systemic toxicity in the murine oropharyngeal candidiasis models in vivo caused by both fluconazole sensitive and resistant strains. Our results for the first time indicated that artemisinins can be potential antifungal compounds against C. albicans infections by targeting at its hyphal development.


Subject(s)
Artemisinins , Candidiasis, Oral , Animals , Mice , Candida albicans , Candidiasis, Oral/drug therapy , Antifungal Agents/pharmacology , Hyphae , Artemisinins/pharmacology
17.
NPJ Biofilms Microbiomes ; 9(1): 49, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37460552

ABSTRACT

Periodontitis is the most important cause of tooth loss in adults and is closely related to various systemic diseases. Its etiologic factor is plaque biofilm, and the primary treatment modality is plaque control. Studies have confirmed that Fusobacterium nucleatum can cause periodontitis through its virulence factors and copolymerizing effects with other periodontal pathogens, such as the red complex. Inhibiting F. nucleatum is an essential target for preventing periodontitis. The time-consuming and costly traditional periodontal treatment, periodontal scaling, and root planing are a significant burden on individual and public health. Antibiotic use may lead to oral microbial resistance and microbiome imbalance, while probiotics regulate microbial balance. Akkermansia muciniphila is a critical probiotic isolated from the human intestine. It can protect the integrity of the epithelial barrier, regulate and maintain flora homeostasis, improve metabolism, and colonize the oral cavity. Its abundance is inversely correlated with various diseases. We hypothesized that A. muciniphila could inhibit the effects of F. nucleatum and alleviate periodontitis. Bacterial co-culture experiments showed that A. muciniphila could inhibit the expression of the virulence gene of F. nucleatum. After treating gingival epithelial cells (GECs) with F. nucleatum and A. muciniphila, transcriptome sequencing and ELISA experiments on medium supernatant showed that A. muciniphila inhibited the inflammatory effect of F. nucleatum on GECs by inhibiting TLR/MyD88/NF-κB pathway modulation and secretion of inflammatory factors. Finally, animal experiments demonstrated that A. muciniphila could inhibit F. nucleatum-induced periodontitis in BALB/c mice.


Subject(s)
Fusobacterium nucleatum , Periodontitis , Adult , Animals , Mice , Humans , Fusobacterium nucleatum/genetics , Periodontitis/drug therapy , Periodontitis/microbiology , Akkermansia , Gingiva
18.
Microbiol Spectr ; 11(4): e0132223, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37310225

ABSTRACT

Radiation caries is one of the most common complications of head and neck radiotherapy. A shift in the oral microbiota is the main factor of radiation caries. A new form of biosafe radiation, heavy ion radiation, is increasingly being applied in clinical treatment due to its superior depth-dose distribution and biological effects. However, how heavy ion radiation directly impacts the oral microbiota and the progress of radiation caries are unknown. Here, unstimulated saliva samples from both healthy and caries volunteers and caries-related bacteria were directly exposed to therapeutic doses of heavy ion radiation to determine the effects of radiation on oral microbiota composition and bacterial cariogenicity. Heavy ion radiation significantly decreased the richness and diversity of oral microbiota from both healthy and caries volunteers, and a higher percentage of Streptococcus was detected in radiation groups. In addition, heavy ion radiation significantly enhanced the cariogenicity of saliva-derived biofilms, including the ratios of the genus Streptococcus and biofilm formation. In the Streptococcus mutans-Streptococcus sanguinis dual-species biofilms, heavy ion radiation increased the ratio of S. mutans. Next, S. mutans was directly exposed to heavy ions, and the radiation significantly upregulated the gtfC and gtfD cariogenic virulence genes to enhance the biofilm formation and exopolysaccharides synthesis of S. mutans. Our study demonstrated, for the first time, that direct exposure to heavy ion radiation can disrupt the oral microbial diversity and balance of dual-species biofilms by increasing the virulence of S. mutans, increasing its cariogenicity, indicating a potential correlation between heavy ions and radiation caries. IMPORTANCE The oral microbiome is crucial to understanding the pathogenesis of radiation caries. Although heavy ion radiation has been used to treat head and neck cancers in some proton therapy centers, its correlation with dental caries, especially its direct effects on the oral microbiome and cariogenic pathogens, has not been reported previously. Here, we showed that the heavy ion radiation directly shifted the oral microbiota from a balanced state to a caries-associated state by increasing the cariogenic virulence of S. mutans. Our study highlighted the direct effect of heavy ion radiation on oral microbiota and the cariogenicity of oral microbes for the first time.


Subject(s)
Dental Caries , Heavy Ions , Microbiota , Humans , Streptococcus mutans , Streptococcus , Streptococcus sanguis , Biofilms
19.
Int J Antimicrob Agents ; 62(2): 106855, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37211262

ABSTRACT

Oral candidiasis is the most common fungal infectious disease in the human oral cavity, and Candida albicans is the major pathogenic agent. Increasing drug resistance and the lack of new types of antifungals greatly increase the challenges for treating fungal infections. Targeting hyphal transition provides a promising strategy to inhibit the virulence of C. albicans and overcome drug resistance. This study aimed to investigate the effects and mechanisms of sigX-inducing peptide (XIP), a quorum-sensing signal peptide secreted by Streptococcus mutans, on C. albicans hyphal development and biofilm formation in vitro and oropharyngeal candidiasis in vivo. XIP significantly inhibited C. albicans yeast-to-hypha transition and biofilm formation in a dose-dependent manner from 0.01 to 0.1 µM. XIP significantly downregulated expression of genes from the Ras1-cAMP-Efg1 pathway (RAS1, CYR1, TPK2, EFG1 and UME6), a key pathway to regulate C. albicans hyphal development. Importantly, XIP reduced the levels of key molecules cAMP and ATP from this pathway, while the addition of exogenous cAMP and overexpression of RAS1 restored the hyphal development inhibited by XIP. XIP also lost its hyphal inhibitory effects on ras1Δ/Δ and efg1Δ/Δ strains. These results further confirmed that XIP inhibited hyphal development through downregulation of the Ras1-cAMP-Efg1 pathway. A murine oropharyngeal candidiasis model was employed to evaluate the therapeutic effects of XIP on oral candidiasis. XIP effectively reduced the infected epithelial area, fungal burden, hyphal invasion and inflammatory infiltrates. These results revealed the antifungal effects of XIP, and highlighted that XIP can be a potential antifungal peptide against C. albicans infection.


Subject(s)
Candida albicans , Candidiasis, Oral , Animals , Mice , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Biofilms , Candidiasis, Oral/drug therapy , Fungal Proteins/genetics , Fungal Proteins/metabolism , Peptides/pharmacology , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , Virulence
20.
Int J Antimicrob Agents ; 62(1): 106820, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37086819

ABSTRACT

BACKGROUND: Candida albicans (C. albicans) is the most common opportunistic fungal species in the oral cavity. The emergence of drug resistance of C. albicans has necessitated the development of novel antifungal agents. OBJECTIVES: This study evaluated the antifungal activity of a previously developed antimicrobial small molecule, namely II-6s, and explored its potential synergism with fluconazole against C. albicans and the underlying mechanisms. METHODS: The antifungal effects of II-6s against C. albicans were evaluated with microdilution and time-killing assays. Synergism of II-6s with fluconazole was determined by calculating the fractional inhibitory concentration index (FICI). The effects of II-6s on efflux pump, mitochondrial function and energy metabolism were examined to investigate the underlying mechanism of synergism. The antifungal mechanism of II-6s against C. albicans was further explored with RNA-seq and validated with specific mutant strains. RESULTS: II-6s exhibited a fungicidal effect against C. albicans with a minimum fungicidal concentration of 31.25 µg/mL. II-6s also inhibited C. albicans biofilm with a sessile minimum inhibitory concentration at 500 µg/mL. More importantly, II-6s showed a synergistic effect with fluconazole against a fluconazole-resistant strain of C. albicans, which expressed elevated levels of CDR1 (FICI < 0.5). II-6s inhibited the efflux pump activity of C. albicans. Consistently, II-6s inhibited energy metabolism of C. albicans by reducing the mitochondrial membrane potential and ATP generation, and inhibited utilisation of the non-fermentable carbon source. II-6s also inhibited the mitogen-activated protein kinase signal pathway, particularly HOG1, which may explain its antifungal activity against C. albicans. CONCLUSION: The small molecule II-6s inhibits the growth of C. albicans by targeting HOG1. II-6s also synergises with fluconazole by inhibiting the drug efflux pump, representing a promising antifungal agent for the control of candidiasis.


Subject(s)
Candidiasis , Fluconazole , Fluconazole/pharmacology , Candida albicans , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Drug Synergism , Microbial Sensitivity Tests , Drug Resistance, Fungal
SELECTION OF CITATIONS
SEARCH DETAIL