Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Microbiol ; 260: 109184, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34311270

ABSTRACT

Avian leukosis virus (ALV) can induce various tumors and cause serious production problems. ALVs isolated from chickens were divided into six subgroups (A-J). In 2012, a strain of a putative novel subgroup of ALVs was isolated from Chinese native chickens in Jiangsu Province and named as ALV-K. In this study, three ALV-K strains (JS14LH01, JS13LH14, and JS15SG01) were isolated from chickens with suspected ALV infection in Jiangsu Province. Their complete genomes were amplified, sequenced, and analyzed systematically. The results showed that JS14LH01 and JS13LH14 were ALV-K and ALV-E recombinant strains. Whereas JS15SG01 is an ALV-K, ALV-E, and ALV-J multiple recombinant strain containing the U3 region of ALV-J. The pathogenicity test of JS15SG01 revealed that, compared with previous ALV-K strains, the viremia and viral shedding level of JS15SG01-infected chickens were significantly increased, reaching 100 % and 59 %, respectively. More important, JS15SG01 induced significant proliferation of gliocytes in the cerebral cortex of infected chickens, accompanied by the neurotropic phenomenon. This is the first report about a multiple recombinant ALV-K strain that could invade and injure the brain tissue of chickens in China. Our findings enriched the epidemiologic data of ALV and helped to reveal the evolution of ALV strains prevalent in chicken fields.


Subject(s)
Avian Leukosis Virus/genetics , Avian Leukosis/virology , Chickens/virology , Recombination, Genetic , Animals , Avian Leukosis/epidemiology , Avian Leukosis Virus/isolation & purification , Avian Leukosis Virus/pathogenicity , China
2.
Viruses ; 11(8)2019 08 07.
Article in English | MEDLINE | ID: mdl-31394878

ABSTRACT

Subgroup J avian leukosis virus (ALV-J), an oncogenic retrovirus, causes hemangiomas and myeloid tumors in chickens. We previously showed that miR-125b is down-regulated in ALV-J-induced tumors. This study aimed to investigate the possible role of miR-125b in ALV-J-mediated infection and tumorigenesis. Knockdown of miR-125b expression in HP45 cells reduced, whereas over-expression induced late-stage apoptosis. Bioinformatics analysis and luciferase activity assays indicate that miR-125b targets Semaphorin 4D/CD100 (Sema4D) by binding the 3'-untranslated region of messenger RNA (mRNA). Up-regulation of miR-125b in the DF1 cell line suppressed Sema4D expression, whereas miR-125 down-regulation increased Sema4D expression levels. To uncover the function of Sema4D during ALV-J infection, animal infection experiments and in vitro assays were performed and show that Sema4D mRNA levels were up-regulated in ALV-J-infected tissues and cells. Finally, functional experiments show that miR-125 down-regulation and Sema4D over-expression inhibited apoptosis in HP45 cells. These results suggest that miR-125b and its target Sema4D might play an important role in the aggressive growth of HP45 cells induced by avian leukosis viruses (ALVs). These findings improve our understanding of the underlying mechanism of ALV-J infection and tumorigenesis.


Subject(s)
Antigens, CD/genetics , Apoptosis/genetics , Avian Leukosis Virus/physiology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Viral , MicroRNAs/genetics , Semaphorins/genetics , 3' Untranslated Regions , Animals , Chickens , Fibroblasts , Gene Expression Regulation , Host-Pathogen Interactions , RNA Interference , Signal Transduction
3.
Virology ; 519: 121-130, 2018 06.
Article in English | MEDLINE | ID: mdl-29698854

ABSTRACT

Avian leukosis virus subgroup J (ALV-J), a highly oncogenic retrovirus, causes leukemia-like proliferative diseases in chickens. microRNAs post-transcriptionally suppress targets and are involved in the development of various tumors. We previously showed that miR-221 is upregulated in ALV-J-induced tumors. In this study, we analyzed the possible function of miR-221 in ALV-J tumorigenesis. The target validation system showed that CDKN1B is a target of miR-221 and is downregulated in ALV-J infection. As CDKN1B arrests the cell cycle and regulates its progression, we analyzed the proliferation of ALV-J-infected DF-1 cells. ALV-J-infection-induced DF1 cell derepression of G1/S transition and overproliferation required high miR-221 expression followed by CDKN1B downregulation. Cell cycle pathway analysis showed that ALV-J infection induced DF-1 cell overproliferation via the CDKN1B-CDK2/CDK6 pathway. Thus, miR-221 may play an important role in ALV-J-induced aggressive growth of DF-1 cells; these findings have expanded our insights into the mechanism underlying ALV-J infection and tumorigenesis.


Subject(s)
Avian Leukosis Virus/physiology , Cell Cycle/genetics , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p27/genetics , Host-Pathogen Interactions , MicroRNAs/genetics , Animals , Avian Leukosis/virology , Avian Leukosis Virus/classification , Avian Leukosis Virus/genetics , Carcinogenesis/genetics , Cell Cycle/physiology , Cell Line , Chickens/virology , Computational Biology , Down-Regulation , Fibroblasts/physiology , Fibroblasts/virology , Poultry Diseases/virology
4.
J Virol ; 92(1)2018 01 01.
Article in English | MEDLINE | ID: mdl-29070685

ABSTRACT

Chicken Na+/H+ exchanger type I (chNHE1), a multispan transmembrane protein, is a cellular receptor of the subgroup J avian leukosis virus (ALV-J). To identify the functional determinants of chNHE1 responsible for the ALV-J receptor activity, a series of chimeric receptors was created by exchanging the extracellular loops (ECL) of human NHE1 (huNHE1) and chNHE1 and by ECL replacement with a hemagglutinin (HA) tag. These chimeric receptors then were used in binding and entry assays to map the minimal ALV-J gp85-binding domain of chNHE1. We show that ECL1 of chNHE1 (chECL1) is the critical functional ECL that interacts directly with ALV-J gp85; ECL3 is also involved in ALV-J gp85 binding. Amino acid residues 28 to 39 of the N-terminal membrane-proximal region of chECL1 constitute the minimal domain required for chNHE1 binding of ALV-J gp85. These residues are sufficient to mediate viral entry into ALV-J nonpermissive cells. Point mutation analysis revealed that A30, V33, W38, and E39 of chECL1 are the key residues mediating the binding between chNHE1 and ALV-J gp85. Further, the replacement of residues 28 to 39 of huNHE1 with the corresponding chNHE1 residues converted the nonfunctional ALV-J receptor huNHE1 to a functional one. Importantly, soluble chECL1 and huECL1 harboring chNHE1 residues 28 to 39 both could effectively block ALV-J infection. Collectively, our findings indicate that residues 28 to 39 of chNHE1 constitute a domain that is critical for receptor function and mediate ALV-J entry.IMPORTANCE chNHE1 is a cellular receptor of ALV-J, a retrovirus that causes infections in chickens and serious economic losses in the poultry industry. Until now, the domains determining the chNHE1 receptor function remained unknown. We demonstrate that chECL1 is critical for receptor function, with residues 28 to 39 constituting the minimal functional domain responsible for chNHE1 binding of ALV-J gp85 and efficiently mediating ALV-J cell entry. These residues are located in the membrane-proximal region of the N terminus of chECL1, suggesting that the binding site of ALV-J gp85 on chNHE1 is probably located on the apex of the molecule; the receptor-binding mode might be different from that of retroviruses. We also found that soluble chECL1, as well as huECL1 harboring chNHE1 residues 28 to 39, effectively blocked ALV-J infection. These findings contribute to a better understanding of the ALV-J infection mechanism and also provide new insights into the control strategies for ALV-J infection.


Subject(s)
Amino Acids/chemistry , Avian Leukosis Virus/metabolism , Receptors, Virus/metabolism , Sodium-Hydrogen Exchangers/chemistry , Sodium-Hydrogen Exchangers/metabolism , Virus Attachment , Virus Internalization , Amino Acids/metabolism , Animals , Avian Leukosis/virology , Avian Leukosis Virus/chemistry , Avian Leukosis Virus/genetics , Chickens , Humans , Point Mutation , Receptors, Virus/genetics , Sodium-Hydrogen Exchangers/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...