Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 196
Filter
2.
J Agric Food Chem ; 72(20): 11724-11732, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38718268

ABSTRACT

Protein post-translational modifications (PTMs) play an essential role in meat quality development. However, the effect of specific PTM sites on meat proteins has not been investigated yet. The characteristics of pyruvate kinase M (PKM) were found to exhibit a close correlation with final meat quality, and thus, serine 99 (S99) and lysine 137 (K137) in PKM were mutated to study their effect on PKM function. The structural and functional properties of five lamb PKM variants, including wild-type PKM (wtPKM), PKM_S99D (S99 phosphorylation), PKM_S99A (PKM S99 dephosphorylation), PKM_K137Q (PKM K137 acetylation), and PKM_K137R (PKM K137 deacetylation), were evaluated. The results showed that the secondary structure, tertiary structure, and polymer formation were affected among different PKM variants. In addition, the glycolytic activity of PKM_K137Q was decreased because of its weakened binding with phosphoenolpyruvate. In the PKM_K137R variant, the actin phosphorylation level exhibited a decrease, suggesting a low kinase activity of PKM_K137R. The results of molecular simulation showed a 42% reduction in the interface area between PKM_K137R and actin, in contrast to wtPKM and actin. These findings are significant for revealing the mechanism of how PTMs regulate PKM function and provide a theoretical foundation for the development of precise meat quality preservation technology.


Subject(s)
Glycolysis , Pyruvate Kinase , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Pyruvate Kinase/chemistry , Phosphorylation , Animals , Acetylation , Sheep , Protein Processing, Post-Translational , Protein Kinases/metabolism , Protein Kinases/genetics , Protein Kinases/chemistry , Meat/analysis
3.
Nat Nanotechnol ; 19(4): 504-513, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38212523

ABSTRACT

Optically transparent neural microelectrodes have facilitated simultaneous electrophysiological recordings from the brain surface with the optical imaging and stimulation of neural activity. A remaining challenge is to scale down the electrode dimensions to the single-cell size and increase the density to record neural activity with high spatial resolution across large areas to capture nonlinear neural dynamics. Here we developed transparent graphene microelectrodes with ultrasmall openings and a large, transparent recording area without any gold extensions in the field of view with high-density microelectrode arrays up to 256 channels. We used platinum nanoparticles to overcome the quantum capacitance limit of graphene and to scale down the microelectrode diameter to 20 µm. An interlayer-doped double-layer graphene was introduced to prevent open-circuit failures. We conducted multimodal experiments, combining the recordings of cortical potentials of microelectrode arrays with two-photon calcium imaging of the mouse visual cortex. Our results revealed that visually evoked responses are spatially localized for high-frequency bands, particularly for the multiunit activity band. The multiunit activity power was found to be correlated with cellular calcium activity. Leveraging this, we employed dimensionality reduction techniques and neural networks to demonstrate that single-cell and average calcium activities can be decoded from surface potentials recorded by high-density transparent graphene arrays.


Subject(s)
Graphite , Metal Nanoparticles , Mice , Animals , Calcium , Electrodes, Implanted , Platinum , Microelectrodes
4.
J Neurosci ; 44(10)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38238073

ABSTRACT

Experience-dependent gene expression reshapes neural circuits, permitting the learning of knowledge and skills. Most learning involves repetitive experiences during which neurons undergo multiple stages of functional and structural plasticity. Currently, the diversity of transcriptional responses underlying dynamic plasticity during repetition-based learning is poorly understood. To close this gap, we analyzed single-nucleus transcriptomes of L2/3 glutamatergic neurons of the primary motor cortex after 3 d motor skill training or home cage control in water-restricted male mice. "Train" and "control" neurons could be discriminated with high accuracy based on expression patterns of many genes, indicating that recent experience leaves a widespread transcriptional signature across L2/3 neurons. These discriminating genes exhibited divergent modes of coregulation, differentiating neurons into discrete clusters of transcriptional states. Several states showed gene expressions associated with activity-dependent plasticity. Some of these states were also prominent in the previously published reference, suggesting that they represent both spontaneous and task-related plasticity events. Markedly, however, two states were unique to our dataset. The first state, further enriched by motor training, showed gene expression suggestive of late-stage plasticity with repeated activation, which is suitable for expected emergent neuronal ensembles that stably retain motor learning. The second state, equally found in both train and control mice, showed elevated levels of metabolic pathways and norepinephrine sensitivity, suggesting a response to common experiences specific to our experimental conditions, such as water restriction or circadian rhythm. Together, we uncovered divergent transcriptional responses across L2/3 neurons, each potentially linked with distinct features of repetition-based motor learning such as plasticity, memory, and motivation.


Subject(s)
Learning , Neuronal Plasticity , Male , Mice , Animals , Neuronal Plasticity/genetics , Learning/physiology , Neurons/physiology , Motor Skills/physiology , Water/metabolism
5.
Int J Biol Macromol ; 257(Pt 2): 128567, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061521

ABSTRACT

The study investigated the different effects between protein phosphorylation and acetylation on glycolytic enzyme activity and myofibrillar protein degradation. Lamb longissimus thoracis lumborum muscles were homogenized and then inhibitors were added for incubation at 4 °C. Phosphatase inhibitor was added to produce a high phosphorylation level (PI group) and lysine deacetylase inhibitor was added to produce a high acetylation level (DI group). The lactate and ATP content in the PI group was inhibited compared with that in the DI group (P < 0.05). Phosphofructokinase (PFK) activity was negatively related with the phosphorylation level and was positively related with the acetylation level in the DI group (P < 0.05). The degradation of troponin T and desmin of the DI group were restrained when compared to that in the PI group (P < 0.05). Compared with initial PFK and desmin, the simulation of phosphorylation and acetylation of PFK and desmin showed different electrostatic potential at the surface and a more unstable structure. The phosphorylation level of the DI group was increased, suggesting that the changes of protein acetylation altered protein phosphorylation. In conclusion, compared with protein phosphorylation, protein acetylation had a greater effect on promoting glycolysis and inhibiting protein degradation.


Subject(s)
Glycolysis , Muscle, Skeletal , Animals , Sheep , Proteolysis , Phosphorylation , Acetylation , Desmin/analysis , Desmin/metabolism , Muscle, Skeletal/metabolism , Meat/analysis
6.
Adv Sci (Weinh) ; 10(33): e2302333, 2023 11.
Article in English | MEDLINE | ID: mdl-37870175

ABSTRACT

Single-unit (SU) recording in nonhuman primates (NHPs) is indispensible in the quest of how the brain works, yet electrodes currently used for the NHP brain are limited in signal longevity, stability, and spatial coverage. Using new structural materials, microfabrication, and penetration techniques, we develop a mechanically robust ultraflexible, 1 µm thin electrode array (MERF) that enables pial penetration and high-density, large-scale, and chronic recording of neurons along both vertical and horizontal cortical axes in the nonhuman primate brain. Recording from three monkeys yields 2,913 SUs from 1,065 functional recording channels (up to 240 days), with some SUs tracked for up to 2 months. Recording from the primary visual cortex (V1) reveals that neurons with similar orientation preferences for visual stimuli exhibited higher spike correlation. Furthermore, simultaneously recorded neurons in different cortical layers of the primary motor cortex (M1) show preferential firing for hand movements of different directions. Finally, it is shown that a linear decoder trained with neuronal spiking activity across M1 layers during monkey's hand movements can be used to achieve on-line control of cursor movement. Thus, the MERF electrode array offers a new tool for basic neuroscience studies and brain-machine interface (BMI) applications in the primate brain.


Subject(s)
Brain , Primates , Animals , Electrodes , Single-Cell Analysis
7.
Invest Ophthalmol Vis Sci ; 64(13): 41, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37883094

ABSTRACT

Purpose: Proteopathy is believed to contribute to age-related macular degeneration (AMD). Much research indicates that AMD begins in the retinal pigment epithelium (RPE), which is associated with formation of extracellular drusen, a clinical hallmark of AMD. Human RPE produces a drusen-associated abnormal protein, the exon Ⅵ-skipping splice isoform of retinal G protein-coupled receptor (RGR-d). In this study, we investigate the detrimental effects of RGR-d on cultured cells and mouse retina. Methods: ARPE-19 cells were stably infected by lentivirus overexpressing RGR or RGR-d and were treated with MG132, sometimes combined with or without endoplasmic reticulum (ER) stress inducer, tunicamycin. RGR and RGR-d protein expression, degeneration pathway, and potential cytotoxicity were explored. Homozygous RGR-d mice aged 8 or 14 months were fed with a high-fat diet for 3 months and then subjected to ocular examination and histopathology experiments. Results: We confirm that RGR-d is proteotoxic under various conditions. In ARPE-19 cells, RGR-d is misfolded and almost completely degraded via the ubiquitin-proteasome system. Unlike normal RGR, RGR-d increases ER stress, triggers the unfolded protein response, and exerts potent cytotoxicity. Aged RGR-d mice manifest disrupted RPE cell integrity, apoptotic photoreceptors, choroidal deposition of complement C3, and CD86+CD32+ proinflammatory cell infiltration into retina and RPE-choroid. Furthermore, the AMD-like phenotype of RGR-d mice can be aggravated by a high-fat diet. Conclusions: Our study confirmed the pathogenicity of the RGR splice isoform and corroborated a significant role of proteopathy in AMD. These findings may contribute to greater comprehension of the multifactorial causes of AMD.


Subject(s)
Eye Proteins , Macular Degeneration , Receptors, G-Protein-Coupled , Animals , Humans , Mice , Exons , Macular Degeneration/genetics , Opsins , Protein Isoforms , Retina , Receptors, G-Protein-Coupled/genetics , Eye Proteins/genetics
8.
J Agric Food Chem ; 71(41): 15280-15286, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37776280

ABSTRACT

Myofibrillar protein degradation is primarily related to meat tenderness through protein phosphorylation regulation. Pyruvate kinase M2 (PKM2), a glycolytic rate-limiting enzyme, is also regarded as a protein kinase to catalyze phosphorylation. The objective of this study was to investigate the relationship between myofibrillar protein degradation and phosphorylation induced by PKM2. Myofibrillar proteins were incubated with PKM2 at 4, 25, and 37 °C. The global phosphorylation level of myofibrillar proteins in the PKM2 group was significantly increased, but it was sensitive to temperature (P < 0.05). Compared with 4 and 25 °C, PKM2 significantly increased the myofibrillar protein phosphorylation level from 0.5 to 6 h at 37 °C (P < 0.05). In addition, the degradation of desmin and actin was inhibited after they were phosphorylated by PKM2 when incubated at 37 °C. These results demonstrate that phosphorylation of myofibrillar proteins catalyzed by PKM2 inhibited protein degradation and provided a possible pathway for meat tenderization through glycolytic enzyme regulation.


Subject(s)
Actins , Pyruvate Kinase , Phosphorylation , Proteolysis , Pyruvate Kinase/metabolism , Actins/metabolism , Muscle, Skeletal/metabolism
9.
BMC Ophthalmol ; 23(1): 331, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37474921

ABSTRACT

BACKGROUND: To evaluate the effect of room air and sulfur hexafluoride (SF6) gas in idiopathic macular hole(MH)surgery. METHODS: Retrospective, interventional, and comparative study. 238 eyes with the idiopathic macular hole that underwent pars plana vitrectomy, internal limiting membrane peeling, fluid-air exchange, and 20% SF6 (SF6 group:125 eyes) or room air tamponade (air group: 113 eyes) were reviewed. The primary outcome measure was the closure rate of primary surgery. RESULTS: The baseline characteristics of the SF6 group and air group were comparable except for the hole size (479.90 ± 204.48 vs. 429.38 ± 174.63 µm, P = 0.043). The anatomical closure rate was 92.8% (116 / 125) with the SF6 group and 76.1% (86 / 113) with the air group (P < 0.001). A cut-off value of MH size to predict primary anatomical closure was 520 µm, which is based on the lower limit of 95% confidential interval of the MH size among the unclosed patients in the air group. There was no significant difference in anatomical closure rates between SF6 and air group (98.7% vs. 91.9%, P = 0.051) for MH ≤ 520 µm, whereas a significantly lower anatomical closure rate was shown in the air group than SF6 group (46.2% vs. 84.0%, P < 0.001) for MH > 520 µm. CONCLUSION: SF6 exhibited more effectiveness than air to achieve a good anatomical outcome for its longer tamponade when MH > 520 µm.


Subject(s)
Retinal Perforations , Humans , Retinal Perforations/surgery , Retrospective Studies , Sulfur Hexafluoride , Vitrectomy , Visual Acuity
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(2): 489-494, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37096524

ABSTRACT

OBJECTIVE: To screen better promoters and provide more powerful tools for basic research and gene therapy of hemophilia. METHODS: Bioinformatics methods were used to analyze the promoters expressing housekeeping genes with high abundance, so as to select potential candidate promoters. The GFP reporter gene vector was constructed, and the packaging efficiency of the novel promoter was investigated with EF1 α promoter as control, and the transcription and activities of the reporter gene were investigated too. The activity of the candidate promoter was investigated by loading F9 gene. RESULTS: The most potential RPS6 promoter was obtained by screening. There was no difference in lentiviral packaging between EF1 α-LV and RPS6-LV, and their virus titer were consistent. In 293T cells, the transduction efficiency and mean fluorescence intensity of RPS6pro-LV and EF1 αpro-LV were proportional to the lentiviral dose. The transfection efficiency of both promoters in different types of cells was in the following order: 293T>HEL>MSC; Compared with EF1 αpro-LV, RPS6pro-LV could obtain a higher fluorescence intensity in MSC cells, and RPS6pro-LV was more stable in long-term cultured HEL cells infected with two lentiviruses respectively. The results of RT-qPCR, Western blot and FIX activity (FIX∶C) detection of K562 cell culture supernatant showed that FIX expression in the EF1 α-F9 and RPS6-F9 groups was higher than that in the unloaded control group, and there was no significant difference in FIX expression between the EF1 α-F9 and RPS6-F9 groups. CONCLUSION: After screening and optimization, a promoter was obtained, which can be widely used for exogenous gene expression. The high stability and viability of the promoter were confirmed by long-term culture and active gene expression, which providing a powerful tool for basic research and clinical gene therapy of hemophilia.


Subject(s)
Genetic Vectors , Hemophilia A , Humans , Transduction, Genetic , Hemophilia A/genetics , Transfection , Blood Coagulation Factors/genetics , Lentivirus/genetics
11.
Food Chem ; 421: 135896, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37098310

ABSTRACT

The aim of this study was to investigate the effects of chilling rate on phosphorylation and acetylation levels of the glycolytic enzymes in meat, including glycogen phosphorylase, phosphofructokinase, aldolase (ALDOA), triose-phosphate isomerase (TPI1), phosphoglycerate kinase, lactate dehydrogenase (LDH). The samples were assigned into three groups: Control, Chilling 1 and Chilling 2, corresponding to the chilling rates of 4.8 °C/h, 23.0 °C/h and 25.1 °C/h respectively. The contents of glycogen and ATP were significantly higher in samples from the chilling groups. The activity and phosphorylation level of the six enzymes were higher in samples at the chilling rate of 25.1 °C/h, while the acetylation level of ALDOA, TPI1 and LDH were inhibited. In brief, glycolysis was delayed and the activity of glycolytic enzymes were maintained at higher level by the changes of phosphorylation and acetylation levels at the chilling rates of 23.0 °C/h and 25.1 °C/h, which may partly explain why very fast chilling improves meat quality.


Subject(s)
Fructose-Bisphosphate Aldolase , Triose-Phosphate Isomerase , Phosphorylation , Acetylation , Triose-Phosphate Isomerase/metabolism , L-Lactate Dehydrogenase/metabolism , Meat , Glycolysis
12.
Curr Eye Res ; 48(1): 70-79, 2023 01.
Article in English | MEDLINE | ID: mdl-36271834

ABSTRACT

PURPOSE: This study aimed to explore the effect of the Semaphorin3A (Sema3A)/Neuropilin-1 (Nrp-1) pathway on Müller cell activities and endoplasmic reticulum (ER) stress induced by high glucose (HG) in vitro. METHODS: The primary Müller cells of C57BL/6J mice were isolated and cultured in normal or high glucose medium. The expression of endogenous Sema3A and its coreceptor Nrp-1 was measured by Western blot. Müller cells were incubated with exogenous recombinant Sema3A protein or transfected with lentiviral vectors expressing small hairpin RNA (shRNA) to knock down the expression of endogenous Sema3A. The proliferation of Müller cells was detected by CCK-8 assay and EdU staining. The migratory ability was detected by the Transwell migration assay. The level of endoplasmic reticulum (ER) stress was analyzed through the detection of GRP78/BiP, IRE1α, phosphorylated IRE1αS724 (p-IRE1αS724), and the splicing rate of XBP1 (XBP1s/XBP1) by using immunofluorescence, Western blot or quantitative polymerase chain reaction (qPCR). RESULTS: HG induced the upregulation of endogenous Sema3A and Nrp-1 receptors in Müller cells. The expression of GRP78/BiP and IRE1α was upregulated by HG, with an increased splicing rate of XBP1. Exogenous Sema3A inhibited HG-induced Müller cell proliferation, migration, and GRP78/BiP-IRE1α-XBP1 axis activation. Knockdown of Sema3A promoted proliferation, migration, and ER stress induced by high glucose in Müller cells. CONCLUSION: Sema3A inhibited the increased proliferative and migratory activities induced by high glucose by attenuating ER stress in Müller cells.


Subject(s)
Protein Serine-Threonine Kinases , Semaphorin-3A , Animals , Mice , Apoptosis , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Endoribonucleases/metabolism , Ependymoglial Cells/metabolism , Glucose/pharmacology , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , RNA, Small Interfering , Semaphorin-3A/pharmacology
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-982085

ABSTRACT

OBJECTIVE@#To screen better promoters and provide more powerful tools for basic research and gene therapy of hemophilia.@*METHODS@#Bioinformatics methods were used to analyze the promoters expressing housekeeping genes with high abundance, so as to select potential candidate promoters. The GFP reporter gene vector was constructed, and the packaging efficiency of the novel promoter was investigated with EF1 α promoter as control, and the transcription and activities of the reporter gene were investigated too. The activity of the candidate promoter was investigated by loading F9 gene.@*RESULTS@#The most potential RPS6 promoter was obtained by screening. There was no difference in lentiviral packaging between EF1 α-LV and RPS6-LV, and their virus titer were consistent. In 293T cells, the transduction efficiency and mean fluorescence intensity of RPS6pro-LV and EF1 αpro-LV were proportional to the lentiviral dose. The transfection efficiency of both promoters in different types of cells was in the following order: 293T>HEL>MSC; Compared with EF1 αpro-LV, RPS6pro-LV could obtain a higher fluorescence intensity in MSC cells, and RPS6pro-LV was more stable in long-term cultured HEL cells infected with two lentiviruses respectively. The results of RT-qPCR, Western blot and FIX activity (FIX∶C) detection of K562 cell culture supernatant showed that FIX expression in the EF1 α-F9 and RPS6-F9 groups was higher than that in the unloaded control group, and there was no significant difference in FIX expression between the EF1 α-F9 and RPS6-F9 groups.@*CONCLUSION@#After screening and optimization, a promoter was obtained, which can be widely used for exogenous gene expression. The high stability and viability of the promoter were confirmed by long-term culture and active gene expression, which providing a powerful tool for basic research and clinical gene therapy of hemophilia.


Subject(s)
Humans , Transduction, Genetic , Genetic Vectors , Hemophilia A/genetics , Transfection , Blood Coagulation Factors/genetics , Lentivirus/genetics
14.
Front Endocrinol (Lausanne) ; 13: 986303, 2022.
Article in English | MEDLINE | ID: mdl-36157454

ABSTRACT

Purpose: To identify the biomarkers in the critical period of development in diabetic retinopathy (DR) in Chinese with type 2 diabetes using targeted and untargeted metabolomics, and to explore the feasibility of their clinical application. Methods: This case-control study described the differential metabolites between 83 Chinese type 2 diabetes mellitus (T2DM) samples with disease duration ≥ 10 years and 27 controls matched cases. Targeted metabolomics using high-resolution mass spectrometry with liquid chromatography was performed on plasma samples of subjects. The results were compared to our previous untargeted metabolomics study and ELISA was performed to validate the mutual differential metabolites of targeted and untargeted metabolomics on plasma. Multiple linear regression analyses were performed to adjust for the significance of different metabolites between groups. Result: Mean age of the subjects was 66.3 years and mean T2DM duration was 16.5 years. By cross-validating with results from previous untargeted metabolomic assays, we found that L-Citrulline (Cit), indoleacetic acid (IAA), 1-methylhistidine (1-MH), phosphatidylcholines (PCs), hexanoylcarnitine, chenodeoxycholic acid (CDCA) and eicosapentaenoic acid (EPA) were the most distinctive metabolites biomarkers to distinguish the severity of DR for two different metabolomic approaches in our study. We mainly found that samples in the DR stage showed lower serum level of Cit and higher serum level of IAA compared with samples in the T2DM stage, while during the progression of diabetic retinopathy, the serum levels of CDCA and EPA in PDR stage were significantly lower than NPDR stage. Among them, 4 differential key metabolites including Cit, IAA, CDCA and EPA were confirmed with ELISA. Conclusion: This is the first study to compare the results of targeted and untargeted metabolomics via liquid chromatography-mass spectrometry to find the serum biomarkers which could reflect the metabolic variations among different stages of DR in Chinese. The progression of DR in Chinese at different critical stages was related to the serum levels of specific differential metabolites, of which there is a significant correlation between DR progression and increased IAA and decreased Cit, hexanoylcarnitine, CDCA, and EPA. However, larger studies are needed to confirm our results. Based on this study, it could be inferred that the accuracy of targeted metabolomics for metabolite expression in serum is to some extent higher than that of untargeted metabolomics.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Aged , Biomarkers , Carnitine/analogs & derivatives , Case-Control Studies , Chenodeoxycholic Acid , China/epidemiology , Citrulline , Diabetes Mellitus, Type 2/complications , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/etiology , Eicosapentaenoic Acid , Enzyme-Linked Immunosorbent Assay , Humans , Metabolomics , Phosphatidylcholines
15.
Invest Ophthalmol Vis Sci ; 63(9): 9, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35938903

ABSTRACT

Purpose: To identify a novel corticotropin-releasing hormone (CRH) gene variant relevant in patients with central serous chorioretinopathy (CSC). Methods: We performed a genetic study of CSC in families and sporadic cases with controls. Using whole-exome sequencing and linkage analysis, we identified a heterozygous insertion variant, Gln52insPro, in the CRH gene that cosegregated in two Chinese families with CSC. This variant was evaluated among an additional 1307 patients with CSC and 1438 ethnicity-matched control individuals from three independent Chinese cohorts. Results: The CRH variant was strongly associated with CSC in these cohorts of Chinese patients (Pmeta = 1.24 × 10-11; odds ratio, 3.01; 95% confidence interval, 2.15-4.21). The risk variant Gln52insPro decreased CRH gene expression. Conclusions: Our results implicate the hypothalamic-pituitary-adrenal stress response system in the pathogenesis of CSC and provide a novel rationale for therapeutic intervention.


Subject(s)
Central Serous Chorioretinopathy , Asian People , Central Serous Chorioretinopathy/diagnosis , Central Serous Chorioretinopathy/genetics , Genetic Linkage , Humans , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology
16.
Food Chem ; 397: 133739, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35940100

ABSTRACT

This study examined cooperative regulation of phosphorylation and acetylation of glycolytic enzymes on their activity and lamb meat quality. Muscle samples were divided into two groups (fast and slow) according to their glycolysis rate as defined by pH decline rate from 1 h to 1 d postmortem. In slow glycolysis rate group, the activity of hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) was lower and meat sample showed lower a*, higher shear force and cooking loss. The acetylation and phosphorylation of HK were positively correlated with HK activity. The acetylation and phosphorylation of PFK were correlated with shear force and negatively associated with PFK activity. The acetylation and phosphorylation of PK were significantly correlated with each other but showed insignificant correlations with PK activity. Briefly, the phosphorylation and acetylation of HK, PFK and PK coregulate glycolysis through different crosstalk patterns on their activity and this might affect meat quality.


Subject(s)
Phosphofructokinase-1 , Red Meat , Acetylation , Animals , Glycolysis , Hexokinase/genetics , Hexokinase/metabolism , Phosphofructokinase-1/metabolism , Phosphofructokinases , Phosphorylation , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , Sheep
17.
Neuron ; 110(14): 2334-2350.e8, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35584693

ABSTRACT

Inhibitory neurons (INs) consist of distinct subtypes with unique functions. Previous studies on INs mainly focused on single brain regions, and thus it remains unclear whether the modulation of IN subtypes occurs globally across multiple regions. Here, we monitored the activity of different cortical IN subtypes at both macroscale and microscale in mice learning a lever-press task. Learning evoked a global modulation of IN subtypes throughout the cortex. The initial learning phase involved strong activation of vasoactive intestinal peptide-expressing INs (VIP-INs) and weak activation of somatostatin-expressing INs (SOM-INs). Inactivating VIP-INs increased SOM-IN activity and impaired initial learning. Concurrently, cortical cholinergic inputs from the basal forebrain were initially more active but became less engaged over learning. Manipulation of the cholinergic system impaired motor learning and differentially altered activity of IN subtypes. These results reveal that motor learning involves a global and subtype-specific modulation on cortical INs regulated by the cholinergic system.


Subject(s)
Acetylcholine , Neurons , Animals , Cholinergic Agents/pharmacology , Interneurons/physiology , Learning/physiology , Mice , Vasoactive Intestinal Peptide
18.
Curr Eye Res ; 47(2): 269-276, 2022 02.
Article in English | MEDLINE | ID: mdl-34328805

ABSTRACT

PURPOSE: To explore whether there is an association between dietary choline intake and odds of diabetic retinopathy (DR) in the US diabetic population. METHODS: A cross-sectional study was conducted using the combined data of the National Health and Nutrition Examination Survey (NHANES) 2005-2008 of a complex, multistage, and probability-sampling design. Energy-adjusted choline intake was calculated separately for men and women using the residual method. Binary logistic regression adjusting for covariates was used to identify the variables associated with DR. RESULTS: We included 644 male and 628 female diabetic subjects, which were equivalent to a weighted survey sample of 9,339,124 for males and 10,109,553 for females respectively. Female DR patients consumed more choline than non-DR patients (268.6 mg/d vs 250.9 mg/d; p = .046). The estimated prevalence of DR was 17.4%, 21.9%, and 29.7% across three levels of dietary choline intake in females, respectively. In multivariable logistic-regression models, the odds ratio (OR) of DR for female patients in the highest choline intake group was 2.14 (95% confidence interval [CI], 1.38-3.31; p = .001) compared with those in the lowest intake group. This association was positive but not statistically significant in males. CONCLUSION: Higher intake of dietary choline is associated with increased odds of DR in females, but not in males. Further studies are warranted to investigate the direct role of choline in DR development and determine the recommended daily intake of choline for diabetic patients weighing the pros and cons of dietary choline consumption.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Choline , Cross-Sectional Studies , Diabetic Retinopathy/epidemiology , Diet , Female , Humans , Male , Nutrition Surveys
19.
Chinese Journal of Hematology ; (12): 336-341, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-935091

ABSTRACT

Objective: To retrospectively analyze the data of Chinese patients with newly diagnosed acute promyelocytic leukemia (APL) to preliminarily discuss the clinical and cytogenetic characteristics. Methods: From February 2004 to June 2020, patients with newly diagnosed APL aged ≥ 15 years who were admitted to the Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College were chosen. Clinical and laboratory features were retrospectively analyzed. Results: A total of 790 cases were included, with a male to female ratio of 1.22. The median age of the patients was 41 (15-76) years. Patients aged between 20 and 59 predominated, with 632 patients (80%) of 790 patients classified as low and intermediate risk and 158 patients (20%) of 790 patients classified as high risk. The white blood cell, platelet, and hemoglobin levels at diagnosis were 2.3 (0.1-176.1) ×10(9)/L, 29.5 (2.0-1220.8) ×10(9)/L, and 89 (15-169) g/L, respectively, and 4.8% of patients were complicated with psoriasis. The long-form type of PML-RARα was most commonly seen in APL, accounting for 58%. Both APTT extension (10.3%) and creatinine>14 mg/L (1%) are rarely seen in patients at diagnosis. Cytogenetics was performed in 715 patients with newly diagnosed APL. t (15;17) with additional chromosomal abnormalities were found in 155 patients, accounting for 21.7%; among which, +8 was most frequently seen. A complex karyotype was found in 64 (9.0%) patients. Next-generation sequencing was performed in 178 patients, and 113 mutated genes were discovered; 75 genes had an incidence rate>1%. FLT3 was the most frequently seen, which accounted for 44.9%, and 20.8% of the 178 patients present with FLT3-ITD. Conclusions: Patients aged 20-59 years are the most common group with newly diagnosed APL. No obvious difference was found in the ratio of males to females. In terms of risk stratification, patients divided into low and intermediate risk predominate. t (15;17) with additional chromosomal abnormalities accounted for 21% of 715 patients, in which +8 was most commonly seen. The long-form subtype was most frequently seen in PML-RARα-positive patients, and FLT3 was most commonly seen in the mutation spectrum of APL.


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Chromosome Aberrations , Cytogenetics , Leukemia, Promyelocytic, Acute/genetics , Mutation , Oncogene Proteins, Fusion/genetics , Retrospective Studies
20.
STAR Protoc ; 2(4): 100973, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34849490

ABSTRACT

Characterizing cortex-wide neural activity is essential for understanding large-scale interactions among distributed cortical regions. Here, we describe a protocol using wide-field calcium imaging to monitor the cortex-wide activity in awake, head-fixed mice. This approach provides sufficient signal-to-noise ratio and spatiotemporal resolution to capture large-scale neural activity in behaving mice on a moment-by-moment basis. The use of genetically encoded calcium indicators allows longitudinal imaging over months and can achieve cell-type specificity. We also describe a pipeline to process the imaging data. For complete details on the use and execution of this protocol, please refer to Makino et al. (2017) and Liu et al. (2021).


Subject(s)
Calcium/metabolism , Cerebral Cortex , Microscopy/methods , Molecular Imaging/methods , Wakefulness/physiology , Animals , Cerebral Cortex/chemistry , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...