Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Biotechnol ; 42(2): 305-315, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37095348

ABSTRACT

Simple, efficient and well-tolerated delivery of CRISPR genome editing systems into primary cells remains a major challenge. Here we describe an engineered Peptide-Assisted Genome Editing (PAGE) CRISPR-Cas system for rapid and robust editing of primary cells with minimal toxicity. The PAGE system requires only a 30-min incubation with a cell-penetrating Cas9 or Cas12a and a cell-penetrating endosomal escape peptide to achieve robust single and multiplex genome editing. Unlike electroporation-based methods, PAGE gene editing has low cellular toxicity and shows no significant transcriptional perturbation. We demonstrate rapid and efficient editing of primary cells, including human and mouse T cells, as well as human hematopoietic progenitor cells, with editing efficiencies upwards of 98%. PAGE provides a broadly generalizable platform for next-generation genome engineering in primary cells.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Animals , Mice , Gene Editing/methods , CRISPR-Cas Systems/genetics , Electroporation , Hematopoietic Stem Cells
2.
iScience ; 26(8): 107366, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37539024

ABSTRACT

Heterosis is an important genetic phenomenon that has been observed and widely utilized in agriculture. However, the genetic and molecular bases of heterosis are unclear. Through transcriptome-wide association studies (TWAS) and expression quantitative trait locus (eQTL) analysis to integrate genome, transcriptome, and heterotic phenotype of a half-sibling Arabidopsis hybrid population, we report that the genetic and molecular bases of variations in leaf growth heterosis can be explained by the varied expression levels of growth-regulating genes resulting from distinct sets of heterozygous eQTLs carried by the half-sibling hybrids. In F1 versus parent, the degree of up-regulated gene expression in the cell cycle pathway in the shoot apex and the photosynthesis pathway in true leaf positively correlates with true leaf area heterosis level, and this is affected by the accumulation of superior heterozygous eQTLs. This was further corroborated by the major contribution of increased photosynthetic cell number to leaf area heterosis.

3.
Proc Natl Acad Sci U S A ; 120(36): e2303859120, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37639593

ABSTRACT

Recurrent chromosomal rearrangements found in rhabdomyosarcoma (RMS) produce the PAX3-FOXO1 fusion protein, which is an oncogenic driver and a dependency in this disease. One important function of PAX3-FOXO1 is to arrest myogenic differentiation, which is linked to the ability of RMS cells to gain an unlimited proliferation potential. Here, we developed a phenotypic screening strategy for identifying factors that collaborate with PAX3-FOXO1 to block myo-differentiation in RMS. Unlike most genes evaluated in our screen, we found that loss of any of the three subunits of the Nuclear Factor Y (NF-Y) complex leads to a myo-differentiation phenotype that resembles the effect of inactivating PAX3-FOXO1. While the transcriptomes of NF-Y- and PAX3-FOXO1-deficient RMS cells bear remarkable similarity to one another, we found that these two transcription factors occupy nonoverlapping sites along the genome: NF-Y preferentially occupies promoters, whereas PAX3-FOXO1 primarily binds to distal enhancers. By integrating multiple functional approaches, we map the PAX3 promoter as the point of intersection between these two regulators. We show that NF-Y occupies CCAAT motifs present upstream of PAX3 to function as a transcriptional activator of PAX3-FOXO1 expression in RMS. These findings reveal a critical upstream role of NF-Y in the oncogenic PAX3-FOXO1 pathway, highlighting how a broadly essential transcription factor can perform tumor-specific roles in governing cellular state.


Subject(s)
Rhabdomyosarcoma , CCAAT-Binding Factor/genetics , Cell Differentiation/genetics , Chromosome Aberrations , Rhabdomyosarcoma/genetics , Transcription Factors
4.
Blood ; 142(11): 973-988, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37235754

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma. Up to 40% of patients with DLBCL display refractory disease or relapse after standard chemotherapy treatment (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone [R-CHOP]), leading to significant morbidity and mortality. The molecular mechanisms of chemoresistance in DLBCL remain incompletely understood. Using a cullin-really interesting new gene (RING) ligase-based CRISPR-Cas9 library, we identify that inactivation of the E3 ubiquitin ligase KLHL6 promotes DLBCL chemoresistance. Furthermore, proteomic approaches helped identify KLHL6 as a novel master regulator of plasma membrane-associated NOTCH2 via proteasome-dependent degradation. In CHOP-resistant DLBCL tumors, mutations of NOTCH2 result in a protein that escapes the mechanism of ubiquitin-dependent proteolysis, leading to protein stabilization and activation of the oncogenic RAS signaling pathway. Targeting CHOP-resistant DLBCL tumors with the phase 3 clinical trial molecules nirogacestat, a selective γ-secretase inhibitor, and ipatasertib, a pan-AKT inhibitor, synergistically promotes DLBCL destruction. These findings establish the rationale for therapeutic strategies aimed at targeting the oncogenic pathway activated in KLHL6- or NOTCH2-mutated DLBCL.


Subject(s)
Drug Resistance, Neoplasm , Lymphoma, Large B-Cell, Diffuse , Humans , Drug Resistance, Neoplasm/genetics , Ubiquitin , Proteomics , Neoplasm Recurrence, Local/drug therapy , Rituximab/therapeutic use , Vincristine , Cyclophosphamide , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Prednisone , Mutation , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Receptor, Notch2/genetics
5.
Nat Cancer ; 4(1): 43-61, 2023 01.
Article in English | MEDLINE | ID: mdl-36646856

ABSTRACT

Prolonged interferon (IFN) signaling in cancer cells can promote resistance to immune checkpoint blockade (ICB). How cancer cells retain effects of prolonged IFN stimulation to coordinate resistance is unclear. We show that, across human and/or mouse tumors, immune dysfunction is associated with cancer cells acquiring epigenetic features of inflammatory memory. Here, inflammatory memory domains, many of which are initiated by chronic IFN-γ, are maintained by signal transducer and activator of transcription (STAT)1 and IFN regulatory factor (IRF)3 and link histone 3 lysine 4 monomethylation (H3K4me1)-marked chromatin accessibility to increased expression of a subset of IFN-stimulated genes (ISGs). These ISGs include the RNA sensor OAS1 that amplifies type I IFN (IFN-I) and immune inhibitory genes. Abrogating cancer cell IFN-I signaling restores anti-programmed cell death protein 1 (PD1) response by increasing IFN-γ in immune cells, promoting dendritic cell and CD8+ T cell interactions, and expanding T cells toward effector-like states rather than exhausted states. Thus, cancer cells acquire inflammatory memory to augment a subset of ISGs that promote and predict IFN-driven immune dysfunction.


Subject(s)
Interferon Type I , Neoplasms , Animals , Humans , Mice , Epigenetic Memory , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Interferon Type I/metabolism , Interferon Type I/pharmacology , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Neoplasms/drug therapy , Neoplasms/genetics , Signal Transduction , T-Lymphocytes/immunology
6.
Nat Chem Biol ; 17(12): 1262-1270, 2021 12.
Article in English | MEDLINE | ID: mdl-34663942

ABSTRACT

DNA deaminase enzymes play key roles in immunity and have recently been harnessed for their biotechnological applications. In base editors (BEs), the combination of DNA deaminase mutator activity with CRISPR-Cas localization confers the powerful ability to directly convert one target DNA base into another. While efforts have been made to improve targeting efficiency and precision, all BEs so far use a constitutively active DNA deaminase. The absence of regulatory control over promiscuous deaminase activity remains a major limitation to accessing the widespread potential of BEs. Here, we reveal sites that permit splitting of DNA cytosine deaminases into two inactive fragments, whose reapproximation reconstitutes activity. These findings allow for the development of split-engineered BEs (seBEs), which newly enable small-molecule control over targeted mutator activity. We show that the seBE strategy facilitates robust regulated editing with BE scaffolds containing diverse deaminases, offering a generalizable solution for temporally controlling precision genome editing.


Subject(s)
Nucleoside Deaminases/chemistry , Biotechnology , CRISPR-Cas Systems , Cytosine/chemistry , DNA/chemistry , DNA Breaks, Double-Stranded , Escherichia coli , Gene Editing , Nucleic Acid Conformation , Nucleoside Deaminases/genetics , Sirolimus/chemistry
7.
Mol Cell ; 81(17): 3604-3622.e10, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34358447

ABSTRACT

The transformed state in acute leukemia requires gene regulatory programs involving transcription factors and chromatin modulators. Here, we uncover an IRF8-MEF2D transcriptional circuit as an acute myeloid leukemia (AML)-biased dependency. We discover and characterize the mechanism by which the chromatin "reader" ZMYND8 directly activates IRF8 in parallel with the MYC proto-oncogene through their lineage-specific enhancers. ZMYND8 is essential for AML proliferation in vitro and in vivo and associates with MYC and IRF8 enhancer elements that we define in cell lines and in patient samples. ZMYND8 occupancy at IRF8 and MYC enhancers requires BRD4, a transcription coactivator also necessary for AML proliferation. We show that ZMYND8 binds to the ET domain of BRD4 via its chromatin reader cassette, which in turn is required for proper chromatin occupancy and maintenance of leukemic growth in vivo. Our results rationalize ZMYND8 as a potential therapeutic target for modulating essential transcriptional programs in AML.


Subject(s)
Interferon Regulatory Factors/metabolism , Leukemia, Myeloid, Acute/metabolism , Tumor Suppressor Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation/genetics , Chromatin/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Interferon Regulatory Factors/genetics , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/metabolism , Promoter Regions, Genetic/genetics , Proto-Oncogene Mas , Transcription Factors/metabolism , Transcription, Genetic/genetics , Tumor Suppressor Proteins/genetics
8.
Nat Commun ; 12(1): 2317, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33875651

ABSTRACT

Plant immunity frequently incurs growth penalties, which known as the trade-off between immunity and growth. Heterosis, the phenotypic superiority of a hybrid over its parents, has been demonstrated for many traits but rarely for disease resistance. Here, we report that the central circadian oscillator, CCA1, confers heterosis for bacterial defense in hybrids without growth vigor costs, and it even significantly enhances the growth heterosis of hybrids under pathogen infection. The genetic perturbation of CCA1 abrogated heterosis for both defense and growth in hybrids. Upon pathogen attack, the expression of CCA1 in F1 hybrids is precisely modulated at different time points during the day by its rhythmic histone modifications. Before dawn of the first infection day, epigenetic activation of CCA1 promotes an elevation of salicylic acid accumulation in hybrids, enabling heterosis for defense. During the middle of every infection day, diurnal epigenetic repression of CCA1 leads to rhythmically increased chlorophyll synthesis and starch metabolism in hybrids, effectively eliminating the immunity-growth heterosis trade-offs in hybrids.


Subject(s)
Arabidopsis/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant , Hybrid Vigor/genetics , Hybridization, Genetic/genetics , Arabidopsis/metabolism , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Bacteria/growth & development , Chlorophyll/metabolism , Epigenesis, Genetic/genetics , Plants, Genetically Modified , Salicylic Acid/metabolism , Starch/metabolism , Transcription Factors/genetics
9.
Plant J ; 97(3): 555-570, 2019 02.
Article in English | MEDLINE | ID: mdl-30375060

ABSTRACT

Alternative splicing (AS) plays key roles in plant development and the responses of plants to environmental changes. However, the mechanisms underlying AS divergence (differential expression of transcript isoforms resulting from AS) in plant accessions and its contribution to responses to environmental stimuli remain unclear. In this study, we investigated genome-wide variation of AS in Arabidopsis thaliana accessions Col-0, Bur-0, C24, Kro-0 and Ler-1, as well as their F1 hybrids, and characterized the regulatory mechanisms for AS divergence by RNA sequencing. We found that most of the divergent AS events in Arabidopsis accessions were cis-regulated by sequence variation, including those in core splice site and splicing motifs. Many genes that differed in AS between Col-0 and Bur-0 were involved in stimulus responses. Further genome-wide association analyses of 22 environmental variables showed that single nucleotide polymorphisms influencing known splice site strength were also associated with environmental stress responses. These results demonstrate that cis-variation in genomic sequences among Arabidopsis accessions was the dominant contributor to AS divergence, and it may contribute to differences in environmental responses among Arabidopsis accessions.


Subject(s)
Alternative Splicing/genetics , Arabidopsis/genetics , Genome-Wide Association Study , RNA Processing, Post-Transcriptional/genetics , Arabidopsis/physiology , Environment , Sequence Analysis, RNA , Stress, Physiological
10.
New Phytol ; 222(2): 895-906, 2019 04.
Article in English | MEDLINE | ID: mdl-30556142

ABSTRACT

Organ size in plants is controlled by the interaction between genotype and the environment. Seed size, an important agronomic trait, largely determines yield and is an important focus of research. However, the genetic components underpinning natural variation of seed size in undomesticated species remain largely unidentified. Here we report a genome-wide association study (GWAS) of seed size in Arabidopsis thaliana, which identified 38 significantly associated loci, including one locus associated with CYCB1;4. Natural variations in CYCB1;4, which encodes a cyclin protein involved in the cell cycle, significantly influence seed size in A. thaliana. Transgenic plants with enhanced CYCB1;4 expression show normal development, exhibit increased seed size as a result of an accelerated cell cycle progression, and tend to produce higher yields. By contrast, cycb1;4 mutants have smaller seeds, and the effect is especially pronounced in a large-seed accession. The temporal and spatial expression pattern of CYCB1;4 suggests that this gene may function in both maternal tissues and zygotic tissues to coordinate the final size of seeds. Taken together, our results provide genetic insights into natural variation in seed size in Arabidopsis. Moreover, CYCB1;4 homologs in other crops could have great potential as targets for efforts aimed at yield improvement.


Subject(s)
Arabidopsis/anatomy & histology , Arabidopsis/genetics , Genome-Wide Association Study , Seeds/anatomy & histology , Gene Expression Regulation, Plant , Mutation/genetics , Organ Size , Seeds/genetics
11.
Proc Natl Acad Sci U S A ; 114(30): 8101-8106, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28696287

ABSTRACT

Heterosis is most frequently manifested by the substantially increased vigorous growth of hybrids compared with their parents. Investigating genomic variations in natural populations is essential to understand the initial molecular mechanisms underlying heterosis in plants. Here, we characterized the genomic architecture associated with biomass heterosis in 200 Arabidopsis hybrids. The genome-wide heterozygosity of hybrids makes a limited contribution to biomass heterosis, and no locus shows an obvious overdominance effect in hybrids. However, the accumulation of significant genetic loci identified in genome-wide association studies (GWAS) in hybrids strongly correlates with better-parent heterosis (BPH). Candidate genes for biomass BPH fall into diverse biological functions, including cellular, metabolic, and developmental processes and stimulus-responsive pathways. Important heterosis candidates include WUSCHEL, ARGOS, and some genes that encode key factors involved in cell cycle regulation. Interestingly, transcriptomic analyses in representative Arabidopsis hybrid combinations reveal that heterosis candidate genes are functionally enriched in stimulus-responsive pathways, including responses to biotic and abiotic stimuli and immune responses. In addition, stimulus-responsive genes are repressed to low-parent levels in hybrids with high BPH, whereas middle-parent expression patterns are exhibited in hybrids with no BPH. Our study reveals a genomic architecture for understanding the molecular mechanisms of biomass heterosis in Arabidopsis, in which the accumulation of the superior alleles of genes involved in metabolic and cellular processes improve the development and growth of hybrids, whereas the overall repressed expression of stimulus-responsive genes prioritizes growth over responding to environmental stimuli in hybrids under normal conditions.


Subject(s)
Arabidopsis/genetics , Hybrid Vigor , Arabidopsis/growth & development , Biomass , Genome, Plant , Genome-Wide Association Study
12.
J Integr Plant Biol ; 58(5): 466-74, 2016 May.
Article in English | MEDLINE | ID: mdl-26497803

ABSTRACT

Histone modifications affect gene expression, but the mechanism and biological consequence of natural variation in histone modifications remain unclear. Here, we generated genome-wide integrated maps of H3K27me3 modification and transcriptome for Col, C24 and their F1 hybrid. A total of 1,828 genomic regions showing variation in H3K27me3 modification between Col and C24 were identified, most of which were associated with genic regions. Natural variation of H3K27me3 modification between parents could result in allelic bias of H3K27me3 in hybrids. Furthermore, we found that H3K27me3 variation between Col and C24 was negatively correlated with gene expression differences between two accessions, especially with those arising from the cis-effect. Importantly, mutation of CLF, an Arabidopsis methyltransferase for H3K27, altered gene expression patterns between the parents. Together, these data provide insights into natural variation of histone modifications and their association with gene expression differences between Arabidopsis ecotypes.


Subject(s)
Arabidopsis/genetics , Ecotype , Genetic Variation , Histones/metabolism , Hybridization, Genetic , Lysine/metabolism , Alleles , Arabidopsis Proteins/genetics , Crosses, Genetic , Gene Expression Regulation, Plant , Genome, Plant , Homeodomain Proteins/genetics , Methylation , Mutation/genetics , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...