Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 20(3)2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30704048

ABSTRACT

Self-assembling proteins that form diverse architectures are widely used in material science and nanobiotechnology. One class belongs to protein nanocages, which are compartments with nanosized internal spaces. Because of the precise nanoscale structures, proteinaceous compartments are ideal materials for use as general platforms to create distinct microenvironments within confined cellular environments. This spatial organization strategy brings several advantages including the protection of catalyst cargo, faster turnover rates, and avoiding side reactions. Inspired by diverse molecular machines in nature, bioengineers have developed a variety of self-assembling supramolecular protein cages for use as biosynthetic nanoreactors that mimic natural systems. In this mini-review, we summarize current progress and ongoing efforts creating self-assembling protein based nanoreactors and their use in biocatalysis and synthetic biology. We also highlight the prospects for future research on these versatile nanomaterials.


Subject(s)
Nanostructures/chemistry , Nanotechnology/methods , Proteins/chemistry , Biocatalysis , Synthetic Biology
2.
Free Radic Biol Med ; 110: 300-315, 2017 09.
Article in English | MEDLINE | ID: mdl-28673615

ABSTRACT

Viruses are known to exploit the autophagic machinery for their own benefit. In case of the hepatitis C virus autophagy is induced. As autophagy serves as a degradation pathway to maintain cellular homeostasis, it is activated in response to cellular stress such as elevated levels of reactive oxygen species (ROS). Elevated levels of ROS trigger phosphorylation of the autophagic adaptor protein p62 on Ser349 (pS[349] p62) that is involved in the induction of autophagy. Consequently, pS[349] p62 binds with a higher affinity to Keap1 thereby releasing Nrf2 from the complex with Keap1. Although the released Nrf2 should induce as a heterodimer with the sMaf proteins the expression of Nrf2/ARE-dependent genes, in HCV-positive cells no activation of cytoprotective genes occurs even though elevated amounts of pS[349] p62 are present. In HCV-positive cells, free Nrf2 is trapped via delocalized sMaf proteins at the replicon complexes on the cytoplasmic face of the ER and is therefore prevented from its entry into the nucleus. Scavenging of ROS leads to decreased levels of pS[349] p62 and impaired induction of autophagy. Both, inhibition of autophagy and scavenging of ROS result in decreased amounts of released viral particles. Taken together, these data identify an intricate mechanism of HCV-dependent inhibition of Nrf2/ARE-mediated gene expression which counteracts pS[349] p62-induced activation of Nrf2. Thereby elevated ROS-levels are preserved that in turn activate autophagy to favor HCV particle release.


Subject(s)
Antioxidant Response Elements , Autophagy/genetics , Host-Pathogen Interactions , NF-E2-Related Factor 2/genetics , Reactive Oxygen Species/metabolism , Virus Release/genetics , Cell Line, Tumor , Gene Expression Regulation , Hepacivirus/genetics , Hepacivirus/growth & development , Hepacivirus/metabolism , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Phosphorylation , Protein Binding , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Signal Transduction , Virion/genetics , Virion/growth & development , Virion/metabolism
3.
Eur J Cell Biol ; 96(6): 542-552, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28624237

ABSTRACT

Although there is evidence that multivesicular bodies (MVBs) are involved in the release of hepatitis C virus (HCV), many aspects of HCV release are still not fully understood. The amount of α-taxilin that prevents SNARE (soluble N-ethylmaleimidesensitive factor attachment protein receptor) complex formation by binding to free syntaxin 4 is reduced in HCV-positive cells. Therefore, it was analyzed whether the t-SNARE protein syntaxin 4 which mediates vesicles fusion is involved in the HCV life cycle. HCV-positive cells possess an increased amount of syntaxin 4 protein, although the amount of syntaxin 4-specific transcripts is decreased in HCV-positive Huh7.5 cells and in HCV-infected primary human hepatocytes. In HCV-positive cells a significant longer half-life of syntaxin 4 was found that overcompensates for the decreased expression and leads to the elevated level of syntaxin 4. Overexpression of syntaxin 4 reduces the intracellular amount of infectious viral particles by facilitating viral release, while silencing of syntaxin 4 expression using specific siRNAs inhibits the release of HCV particles and so leads to an increase in the intracellular amount of infectious viral particles. This indicates that HCV uses a SNARE-dependent pathway for viral release. Confocal immunofluorescence microscopy revealed a colocalization of syntaxin 4 with a MVB-specific marker, exosomes and HCV core, which suggests a fraction of syntaxin 4 is associated with exosomes loaded with HCV. Altogether, it is assumed that syntaxin 4 is a novel essential cellular factor for the release of HCV.


Subject(s)
Hepacivirus/genetics , Hepatitis C/virology , Host-Pathogen Interactions/genetics , Life Cycle Stages/genetics , Qa-SNARE Proteins/genetics , Exosomes/genetics , Exosomes/virology , Gene Expression Regulation , Hepacivirus/pathogenicity , Hepatitis C/genetics , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Microscopy, Confocal , Multivesicular Bodies , Qa-SNARE Proteins/metabolism , SNARE Proteins/genetics , SNARE Proteins/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Virus Release/genetics
4.
J Virol ; 90(24): 11181-11196, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27707921

ABSTRACT

Hepatitis C virus (HCV) particles are described as lipoviroparticles which are released similarly to very-low-density lipoproteins (VLDLs). However, the release mechanism is still poorly understood; the canonical endoplasmic reticulum-Golgi intermediate compartment (ERGIC) pathway as well as endosome-dependent release has been proposed. Recently, the role of exosomes in the transmission of HCV has been reported. Only a minor fraction of the de novo-synthesized lipoviroparticles is released by the infected cell. To investigate the relevance of multivesicular bodies (MVBs) for viral morphogenesis and release, the MVB inhibitor U18666A was used. Intracellular trafficking was analyzed by confocal microscopy and electron microscopy. Moreover, an mCherry-tagged HCV variant was used. Conditions were established that enable U18666A-dependent inhibition of MVBs without affecting viral replication. Under these conditions, significant inhibition of the HCV release was observed. The assembly of viral particles is not affected. In U18666A-treated cells, intact infectious viral particles accumulate in CD63-positive exosomal structures and large dysfunctional lysosomal structures (multilamellar bodies). These retained particles possess a lower density, reflecting a misloading with lipids. Our data indicate that at least a fraction of HCV particles leaves the cell via the endosomal pathway. Endosomes facilitate the sorting of HCV particles for release or degradation. IMPORTANCE: There are still a variety of open questions regarding morphogenesis and release of hepatitis C virus. The HCV-infected cell produces significant more viral particles that are released, raising the question about the fate of the nonreleased particles. Moreover, the relevance of the endosomal pathway for the release of HCV is under debate. Use of the MVB (multivesicular body) inhibitor U18666A enabled a detailed analysis of the impact of MVBs for viral morphogenesis and release. It was revealed that infectious, fully assembled HCV particles are either MVB-dependently released or intracellularly degraded by the lysosome. Our data indicate that at least a fraction of HCV particles leaves the cell via the endosomal pathway independent from the constitutive secretory pathway. Our study describes a so-far-unprecedented cross talk between two pathways regulating on the one hand the release of infectious viral particles and on the other hand the intracellular degradation of nonreleased particles.


Subject(s)
Androstenes/pharmacology , Anticholesteremic Agents/pharmacology , Exosomes/drug effects , Hepacivirus/drug effects , Hepatocytes/drug effects , Virus Release/drug effects , Animals , Biological Transport/drug effects , Cell Line, Tumor , Cholesterol/metabolism , Exosomes/ultrastructure , Exosomes/virology , Gene Expression , Genes, Reporter , Hepacivirus/physiology , Hepacivirus/ultrastructure , Hepatocytes/ultrastructure , Hepatocytes/virology , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Multivesicular Bodies/drug effects , Multivesicular Bodies/ultrastructure , Multivesicular Bodies/virology , Virion/drug effects , Virion/physiology , Virion/ultrastructure , Virus Assembly/physiology , Red Fluorescent Protein
5.
J Virol ; 90(13): 5989-6000, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27099307

ABSTRACT

UNLABELLED: Syntaxin 17 is an autophagosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein required for the fusion of autophagosomes with lysosomes to form autolysosomes and thereby to deliver the enclosed contents for degradation. Hepatitis C virus (HCV) induces autophagy. In light of the observation that the number of viral particles formed by HCV-infected cells is much greater than the number of infectious viral particles finally released by HCV-infected cells, the regulation of fusion between autophagosomes and lysosomes might fulfill a key function controlling the number of released virions. HCV-replicating cells possess a decreased amount of syntaxin 17 due to impaired expression and increased turnover of syntaxin 17. Overexpression of syntaxin 17 in HCV-replicating cells diminishes the number of released infectious viral particles and decreases the amount of intracellular retained viral particles by favoring the formation of autolysosomes, in which HCV particles are degraded. Inhibition of lysosomal acidification by bafilomycin rescues the decreased release of virions from syntaxin 17-overexpressing cells, while induction of autophagy by rapamycin enforces the impairment of release under these conditions. Vice versa, inhibition of syntaxin 17 expression by specific small interfering RNAs results in an elevated amount of intracellular retained viral particles and facilitates the release of HCV virions by impairment of autophagosome-lysosome fusion. HCV genome replication, however, is not affected by modulation of syntaxin 17 expression. These data identify syntaxin 17 to be a novel factor controlling the release of HCV. This is achieved by regulation of autophagosome-lysosome fusion, which affects the equilibrium between the release of infectious viral particles and lysosomal degradation of intracellular retained viral particles. IMPORTANCE: Hepatitis C virus (HCV) induces autophagy. Syntaxin 17 is an autophagosomal SNARE protein required for the fusion of autophagosomes with lysosomes. In HCV-infected cells, a major fraction of the de novo-synthesized viral particles is not released but is intracellularly degraded. In this context, the effect of HCV on the amount and distribution of syntaxin 17 and the relevance of syntaxin 17 for the viral life cycle were investigated. This study demonstrates that the amount of syntaxin 17 decreased in HCV-replicating cells. In addition, syntaxin 17 is identified to be a novel factor controlling the release of HCV, and the relevance of autophagosome-lysosome fusion as a regulator of the amount of released viral particles is revealed. Taken together, these findings indicate that syntaxin 17 is involved in the regulation of autophagosome-lysosome fusion and thereby affects the equilibrium between the release of infectious viral particles and the lysosomal degradation of intracellularly retained viral particles.


Subject(s)
Hepacivirus/physiology , Qa-SNARE Proteins/metabolism , Virus Release , Autophagy/physiology , Genome, Viral , HeLa Cells , Hepacivirus/drug effects , Host-Pathogen Interactions , Humans , Lysosomes/chemistry , Lysosomes/drug effects , Lysosomes/metabolism , Macrolides/pharmacology , Membrane Fusion/physiology , Phagosomes/chemistry , Phagosomes/metabolism , Protein Binding , Qa-SNARE Proteins/antagonists & inhibitors , Qa-SNARE Proteins/genetics , RNA, Small Interfering/pharmacology , Sirolimus/pharmacology , Virus Replication
6.
Biochem J ; 473(2): 145-55, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26527738

ABSTRACT

Although it is well established that the release of HCV (hepatitis C virus) occurs through the secretory pathway, many aspects concerning the control of this process are not yet fully understood. α-Taxilin was identified as a novel binding partner of syntaxin-4 and of other members of the syntaxin family, which are part of SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) complexes and so are involved in intracellular vesicle traffic. Since α-taxilin prevents t-SNARE (target SNARE) formation by binding exclusively to free syntaxin-4, it exerts an inhibitory effect on the vesicular transport. HCV-replicating Huh7.5 cells and HCV-infected primary human hepatocytes and liver samples of patients suffering from chronic HCV contain significantly less α-taxilin compared with the controls. HCV impairs the expression of α-taxilin via NS5A-dependent interruption of the Raf/MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] signal transduction cascade. Moreover, the half-life of α-taxilin is significantly reduced in HCV-replicating cells. Whereas modulation of α-taxilin expression does not significantly affect genome replication, the overexpression of α-taxilin prevents the release of HCV. In contrast with this, silencing of α-taxilin expression leads to increased release of infectious viral particles. This is due to the negative effect of α-taxilin on t-SNARE formation that leads to impaired vesicular trafficking. Accordingly, overexpression of the t-SNARE component syntaxin-4 increases release of HCV, whereas silencing leads to an impaired release. These data identify α-taxilin as a novel factor that controls the release of HCV and reveal the mechanism by which HCV controls the activity of α-taxilin.


Subject(s)
Hepacivirus/metabolism , Vesicular Transport Proteins/biosynthesis , Hep G2 Cells , Humans , Synaptic Vesicles/metabolism
7.
J Virol ; 90(7): 3330-41, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26719264

ABSTRACT

UNLABELLED: In addition to infectious viral particles, hepatitis B virus-replicating cells secrete large amounts of subviral particles assembled by the surface proteins, but lacking any capsid and genome. Subviral particles form spheres (22-nm particles) and filaments. Filaments contain a much larger amount of the large surface protein (LHBs) compared to spheres. Spheres are released via the constitutive secretory pathway, while viral particles are ESCRT-dependently released via multivesicular bodies (MVBs). The interaction of virions with the ESCRT machinery is mediated by α-taxilin that connects the viral surface protein LHBs with the ESCRT component tsg101. Since filaments in contrast to spheres contain a significant amount of LHBs, it is unclear whether filaments are released like spheres or like virions. To study the release of subviral particles in the absence of virion formation, a core-deficient HBV mutant was generated. Confocal microscopy, immune electron microscopy of ultrathin sections and isolation of MVBs revealed that filaments enter MVBs. Inhibition of MVB biogenesis by the small-molecule inhibitor U18666A or inhibition of ESCRT functionality by coexpression of transdominant negative mutants (Vps4A, Vps4B, and CHMP3) abolishes the release of filaments while the secretion of spheres is not affected. These data indicate that in contrast to spheres which are secreted via the secretory pathway, filaments are released via ESCRT/MVB pathway like infectious viral particles. IMPORTANCE: This study revises the current model describing the release of subviral particles by showing that in contrast to spheres, which are secreted via the secretory pathway, filaments are released via the ESCRT/MVB pathway like infectious viral particles. These data significantly contribute to a better understanding of the viral morphogenesis and might be helpful for the design of novel antiviral strategies.


Subject(s)
DNA-Binding Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Hepatitis B virus/metabolism , Multivesicular Bodies/metabolism , Transcription Factors/metabolism , Virus Release/physiology , Androstenes/pharmacology , Cell Line, Tumor , Cytoskeleton/metabolism , Endosomal Sorting Complexes Required for Transport/antagonists & inhibitors , Endosomal Sorting Complexes Required for Transport/genetics , Hep G2 Cells , Hepatitis B virus/genetics , Hepatocytes/virology , Humans , Microscopy, Confocal , Microscopy, Electron , Multivesicular Bodies/drug effects , Vesicular Transport Proteins/metabolism , Viral Core Proteins/deficiency , Viral Core Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL