Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 103(6): 103639, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38547673

ABSTRACT

Riemerella anatipestifer, belonging to Weeksellaceae family Riemerella, is a bacterium that can infect ducks, geese, and turkeys, causing diseases known as duck infectious serositis, new duck disease, and duck septicemia. We collected diseased materials from ducks on a duck farm in China and then isolated and purified a strain of serotype 1 R. anatipestifer named SX-1. Animal experiments showed that SX-1 is a highly virulent strain with an LD50 value of 101 CFU/mL. The complete genome sequence was obtained. The complete genome sequence of R. anatipestifer SX-1 was 2,112,539 bp; 847 genes were involved in catalytic activity, and 445 genes were related to the cell membrane. The total length of the repetitive sequences was 8746 bp. Four CRISPR loci were predicted in R. anatipestifer strain SX-1, and 4 genomic islands were predicted. Concentration and ultra-high-speed centrifugation were used to extract the outer membrane vesicles of R. anatipestifer SX-1. The OMVs were extracted successfully. Particle size analysis revealed the size and abundance of particles: 147.4 nm, 94.9%; 293.6 nm, 1.1%; 327.2 nm, 1.1%; 397.2 nm, 0.3%; and 371.8 nm, 1.1%. The average size was 173.5 nm. Label-free proteomic technology was used to identify proteins in the outer membrane vesicles. ATCC 11845 served as the reference genome sequence, and 148 proteins were identified using proteomic analysis, which were classified into 5 categories based on their sources. Among them, 24 originated from cytoplasmic proteins, 4 from extracellular secreted proteins, 27 from outer membrane proteins, 10 from periplasmic proteins, and 83 from unknown sources. This study conducted a proteomic analysis of OMVs to provide a theoretical basis for the development of R. anatipestifer OMVs vaccines and adjuvants and lays the foundation for further research on the relationship between the pathogenicity of R. anatipestifer and OMVs.

2.
J Virol ; 98(3): e0115723, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38305152

ABSTRACT

Pet golden hamsters were first identified being infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delta variant of concern (VOC) and transmitted the virus back to humans in Hong Kong in January 2022. Here, we studied the binding of two hamster (golden hamster and Chinese hamster) angiotensin-converting enzyme 2 (ACE2) proteins to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants, including alpha, beta, gamma, delta, and four omicron sub-variants (BA.1, BA.2, BA.3, and BA.4/BA.5). We found that the two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2 (hACE2). Furthermore, the similar infectivity to host cells expressing hamster ACE2s and hACE2 was confirmed with the nine pseudotyped SARS-CoV-2 viruses. Additionally, we determined two cryo-electron microscopy (EM) complex structures of golden hamster ACE2 (ghACE2)/delta RBD and ghACE2/omicron BA.3 RBD. The residues Q34 and N82, which exist in many rodent ACE2s, are responsible for the lower binding affinity of ghACE2 compared to hACE2. These findings suggest that all SARS-CoV-2 VOCs may infect hamsters, highlighting the necessity of further surveillance of SARS-CoV-2 in these animals.IMPORTANCESARS-CoV-2 can infect many domestic animals, including hamsters. There is an urgent need to understand the binding mechanism of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to hamster receptors. Herein, we showed that two hamster angiotensin-converting enzyme 2s (ACE2s) (golden hamster ACE2 and Chinese hamster ACE2) can bind to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants and that pseudotyped SARS-CoV-2 viruses can infect hamster ACE2-expressing cells. The binding pattern of golden hamster ACE2 to SARS-CoV-2 RBDs is similar to that of Chinese hamster ACE2. The two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2. We solved the cryo-electron microscopy (EM) structures of golden hamster ACE2 in complex with delta RBD and omicron BA.3 RBD and found that residues Q34 and N82 are responsible for the lower binding affinity of ghACE2 compared to hACE2. Our work provides valuable information for understanding the cross-species transmission mechanism of SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , Cricetulus , Cryoelectron Microscopy , Host Specificity , Mesocricetus , Animals , Cricetinae , Humans , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/ultrastructure , Cell Line , COVID-19/virology , Cricetulus/metabolism , Cricetulus/virology , Mesocricetus/metabolism , Mesocricetus/virology , Mutation , Pets/metabolism , Pets/virology , Protein Binding , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/ultrastructure
3.
Vet Res Commun ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349546

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens affecting the swine industry. In this report, a novel PRRSV strain SXht2012 was isolated from Shanxi province in China. To identify genetic characteristics of SXht2012, we conducted phylogenetic and homology analyses after sequencing its complete genome. The results revealed that SXht2012 belonged to NADC30-like strain and shared 91.3% nucleotide (nt) identity with strain NADC30. Notably, sequence alignment showed that a distinctive feature in the NSP2 region, where a 131-amino acid (aa) deletion was found in the hypervariable region (HVR). Additionally, variations were also detected in the GP5 protein, specifically in the decoy peptide, T cell peptide, and a potential glycosylation site (aa 32). Furthermore, we also found that SXht2012 was likely a recombination virus originating from NADC30-like and JXA1-like strains, and three recombination breakpoints were identified in the genome at nt positions 1516, 5280 and 6851, which correspond to the NSP2, NSP3, and NSP7 regions. Overall, these findings have significant implications for understanding the genetic variation and evolutionary dynamics of PRRSV strains.

4.
Viruses ; 15(6)2023 05 25.
Article in English | MEDLINE | ID: mdl-37376537

ABSTRACT

Pseudorabies virus (PRV) variants have caused substantial economic losses in the swine industry in China since 2011. To surveil the genetic variation in PRV field strains, here, two novel variant strains of PRV were isolated from Shanxi Province in central China and were designated SX1910 and SX1911. To identify the genetic characteristics of the two isolates, their complete genomes were sequenced, and phylogenetic analysis and sequence alignment revealed that field PRV variants have undergone genetic variations; notably, the protein-coding sequences UL5, UL36, US1 and IE180 exhibited extensive variation and contained one or more hypervariable regions. Furthermore, we also found that the glycoproteins gB and gD of the two isolates had some novel amino acid (aa) mutations. Importantly, most of these mutations were located on the surface of the protein molecule, according to protein structure model analysis. We constructed a mutant virus of SX1911 with deletion of the gE and gI genes via CRISPR/Cas9. When tested in mice, SX1911-ΔgE/gI-vaccinated mice were protected within a comparable range to Bartha-K61-vaccinated mice. Additionally, a higher dose of inactivated Bartha-K61 protected the mice from lethal SX1911 challenge, while a lower neutralization titer, higher viral load and more severe microscopic lesions were displayed in Bartha-K61-vaccinated mice. These findings highlight the need for continuous monitoring of PRV and novel vaccine development or vaccination program design for PRV control in China.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Swine Diseases , Swine , Animals , Mice , Pseudorabies/prevention & control , Phylogeny , Genomics , China
5.
Front Vet Sci ; 9: 961354, 2022.
Article in English | MEDLINE | ID: mdl-36524231

ABSTRACT

Bacteriophages are viruses that infect bacteria. Bacteria and bacteriophages have been fighting for survival. Over time, the evolution of both populations has been affected. Pathogenic Flavobacteriaceae species including Riemerella anatipestifer mainly infects ducklings, geese, and turkeys. However, it does not infect humans, rats, or other mammals, and is a suitable and safe research object in the laboratory. Our previous study showed that there is a 10K genomic island in R. anatipestiferIn this study, we found another integrated 50K genomic islands and focused on the relationship between R. anatipestifer genomic islands and the RAP44 phage genome. The phage RAP44 genome was integrated into R. anatipestifer chromosome, and an evolutionary relationship was evident between them in our comparative analysis. Furthermore, the integrated defective RAP44 phage sequence had the function of integration, excision, and cyclization automatically. Integrases are important integration elements. The integrative function of integrase was verified in R. anatipestifer. The integrase with the attP site can be integrated stably at the attB locus of the R. anatipestifer genome. A recombinant strain can stably inherit and express the exogenous gene. By studying the integration between host bacterium and phage, we have provided evidence for the evolution of the genomes in R. anatipestifer.

6.
Front Microbiol ; 11: 323, 2020.
Article in English | MEDLINE | ID: mdl-32210933

ABSTRACT

The newly emerged pseudorabies virus (PRV) novel variants can escape from the immunity induced by the classical vaccine Bartha-K61. Here we investigated the underlying mechanisms by constructing chimeric mutants between epidemic strain HB1201 and the Bartha-K61 vaccine. Our analyses focused on three viral envelope glycoproteins, namely gB, gC, and gD, as they exhibit remarkable genetic variations and are also involved in induction of protective immunity. The corresponding genes were swapped reciprocally either individually or in combination by using CRISPR/Cas9 technology and homologous recombination. The rescued chimeric viruses exhibited differential sensitivity to neutralizing antibodies in vitro, and gC was found to be the major contributor to inefficient neutralization against HB1201 by anti-Bartha-K61 serum. When tested in the 4-week-piglet model, substitution with HB1201 gC enabled Bartha-K61 to induce a protective immunity against HB1201 at a high challenge dose of 107 TCID50. Interestingly, despite a relatively lower cross-neutralization ability, the gD exchange also enabled Bartha-K61 to protect piglets from lethal challenge. In both cases, clinical signs and microscopic lesions were eased, and so was the viral tissue load with the exception of brain. A better protection could be achieved when both gC and gD were swapped in terms of reducing viral load in brain and virus-induced microscopic lesions. Thus, our studies not only revealed individual roles of gC and gD variations in the immune escape and also suggested a synergistic effect of both proteins on induction of protective immunity. These findings have important implications in novel vaccine development for PRV control in China.

7.
Vet Microbiol ; 178(1-2): 61-9, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-25960335

ABSTRACT

Bovine parainfluenza virus type 3 (BPIV3) is an important respiratory tract pathogen for both young and adult cattle. So far, three genotypes A, B and C of BPIV3 have been described on the basis of genetic and phylogenetic analysis. But fine mapping of epitopes of BPIV3 is scant and the antigenic variations among the three genotypes of BPIV3 have not been reported. Nucleocapsid protein (NP) is the most abundant protein in the virion and highly conserved in BPIV3, which is crucial for the induction of protective immunity in host. To identify antigenic determinants of BPIV3 NP, a panel of monoclonal antibodies (mAbs) was tested against a series of overlapping recombinant NP fragments expressed in Escherichia coli. Firstly, six monoclonal antibodies (mAbs) against NP of the genotype C of BPIV3 (BPIV3c) were generated by using the purified BPIV3c strain SD0835 as immunogen and the recombinant NP of SD0835 as screening antigen. Then three antigen epitopes were identified with the six mAbs. One epitope (91)GNNADVKYVIYM(102) was recognized by mAb 5E5. The mAbs 7G5, 7G8, 7G9, and 7H5 were reactive with another epitope (407)FYKPTGG(413). The third epitope (428)ESRGDQDQ(435) was reactive with mAb 6F8. Further analysis showed that the epitope (91-102 amino acids [aa]) was the most conserved and reactive with mAb 5E5 for all three genotypes of BPIV3 and HPIV3. The epitope (407-413 aa) was relatively conserved and reactive with mAbs 7G5, 7G8, 7G9, and 7H5 for BPIV3a, BPIV3c and HPIV3, but not reactive with BPIV3b. The epitope (428-435 aa) was less conserved and was reactive only with mAb 6F8 for BPIV3a and BPIV3c. These results suggested that there were evident antigenic variations among the three genotypes of BPIV3 and HPIV3. The mAb 6F8 could be used to detect BPIV3a and BPIV3c. The mAbs 7G5, 7G8, 7G9, and 7H5 might be used for differentiate BPIV3a, BPIV3c and HPIV3 from BPIV3b. The mAb 5E5 might be used for detecting all three types of BPIV3 and HPIV3. The results in this study would have potential applications in the development of suitable diagnostic techniques for BPIV3, which was prevalent in China.


Subject(s)
Antigens, Viral/genetics , Epitopes/genetics , Nucleocapsid Proteins/genetics , Parainfluenza Virus 3, Bovine/genetics , Amino Acid Sequence , Antibodies, Monoclonal/immunology , Antigens, Viral/immunology , Escherichia coli , Genotype , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...