Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
medRxiv ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38798581

ABSTRACT

Background/purpose: The use of artificial intelligence (AI) in radiotherapy (RT) is expanding rapidly. However, there exists a notable lack of clinician trust in AI models, underscoring the need for effective uncertainty quantification (UQ) methods. The purpose of this study was to scope existing literature related to UQ in RT, identify areas of improvement, and determine future directions. Methods: We followed the PRISMA-ScR scoping review reporting guidelines. We utilized the population (human cancer patients), concept (utilization of AI UQ), context (radiotherapy applications) framework to structure our search and screening process. We conducted a systematic search spanning seven databases, supplemented by manual curation, up to January 2024. Our search yielded a total of 8980 articles for initial review. Manuscript screening and data extraction was performed in Covidence. Data extraction categories included general study characteristics, RT characteristics, AI characteristics, and UQ characteristics. Results: We identified 56 articles published from 2015-2024. 10 domains of RT applications were represented; most studies evaluated auto-contouring (50%), followed by image-synthesis (13%), and multiple applications simultaneously (11%). 12 disease sites were represented, with head and neck cancer being the most common disease site independent of application space (32%). Imaging data was used in 91% of studies, while only 13% incorporated RT dose information. Most studies focused on failure detection as the main application of UQ (60%), with Monte Carlo dropout being the most commonly implemented UQ method (32%) followed by ensembling (16%). 55% of studies did not share code or datasets. Conclusion: Our review revealed a lack of diversity in UQ for RT applications beyond auto-contouring. Moreover, there was a clear need to study additional UQ methods, such as conformal prediction. Our results may incentivize the development of guidelines for reporting and implementation of UQ in RT.

2.
Foods ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38790808

ABSTRACT

α-Dicarbonyl compounds (α-DCs) are commonly present in various foods. We conducted the investigation into concentration changes of α-DCs including 3-deoxyglucosone (3-DG), glyoxal (GO), and methylglyoxal (MGO) in fresh fruits and decapped commercial juices during storage at room temperature and 4 °C, as well as in homemade juices during storage at 4 °C. The studies indicate the presence of α-DCs in all samples. The initial contents of 3-DG in the commercial juices (6.74 to 65.61 µg/mL) are higher than those in the homemade ones (1.97 to 4.65 µg/mL) as well as fruits (1.58 to 3.33 µg/g). The initial concentrations of GO and MGO are normally less than 1 µg/mL in all samples. During storage, the α-DC levels in the fruits exhibit an initial increase followed by a subsequent decrease, whereas, in all juices, they tend to accumulate continuously over time. As expected, 4 °C storage reduces the increase rates of the α-DC concentrations in most samples. From the viewpoint of the α-DC contents, fruits and homemade juices should always be the first choice for daily intake of nutrients and commercial juices ought to be mostly avoided.

3.
Small Methods ; : e2400108, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558249

ABSTRACT

In contrast to the thermodynamically unfavorable anodic oxygen evolution reaction, the electrocatalytic urea oxidation reaction (UOR) presents a more favorable thermodynamic potential. However, the practical application of UOR has been hindered by sluggish kinetics. In this study, hierarchical porous nanosheet arrays featuring abundant Ni-WO3 heterointerfaces on nickel foam (Ni-WO3/NF) is introduced as a monolith electrode, demonstrating exceptional activity and stability toward UOR. The Ni-WO3/NF catalyst exhibits unprecedentedly rapid UOR kinetics (200 mA cm-2 at 1.384 V vs. RHE) and a high turnover frequency (0.456 s-1), surpassing most previously reported Ni-based catalysts, with negligible activity decay observed during a durability test lasting 150 h. Ex situ X-ray photoelectron spectroscopy and density functional theory calculations elucidate that the WO3 interface significantly modulates the local charge distribution of Ni species, facilitating the generation of Ni3+ with optimal affinity for interacting with urea molecules and CO2 intermediates at heterointerfaces during UOR. This mechanism accelerates the interfacial electrocatalytic kinetics. Additionally, in situ Fourier transform infrared spectroscopy provides deep insights into the substantial contribution of interfacial Ni-WO3 sites to UOR electrocatalysis, unraveling the underlying molecular-level mechanisms. Finally, the study explores the application of a direct urea fuel cell to inspire future practical implementations.

4.
Medicine (Baltimore) ; 103(7): e37246, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363939

ABSTRACT

BACKGROUND: Papillary thyroid cancer is an inert malignant tumor with a good response to surgical treatment, low recurrence and metastasis rate, and good prognosis. Diffuse sclerosing thyroid cancer is an invasive subtype that is more common in young people, with a higher rate of lymph node metastasis and recurrence, and a relatively poor prognosis. PATIENT CONCERNS: A 13-year-old girl underwent radical surgery for diffuse sclerosing thyroid cancer. Eight years later, due to a large number of lymph node metastases, she underwent another radical surgery on her neck lymph nodes. METHODS: The patient thyroid ultrasound and neck enhanced CT indicated that the patient had multiple enlarged lymph nodes in the neck with irregular morphology and structure, and the possibility of metastatic lymph nodes was high. Subsequently, the patient underwent thyroid fine-needle aspiration and the results showed that cancer cells were detected in both cervical lymph nodes. DIAGNOSIS: The patient was diagnosed with bilateral cervical lymph node metastases after thyroid surgery. RESULTS: After the second surgery, the patient recovered well, and no residual or focal iodine uptake tissue was found on the enhanced CT examination. CONCLUSION: As diffuse sclerosing thyroid cancer is prone to lymph node and recurrent metastases, once it is diagnosed, radical treatment should be actively performed. Postoperative adjuvant radiation therapy should be administered according to the patient condition and regular follow-ups should be conducted to monitor neck lymph node metastasis.


Subject(s)
Carcinoma, Papillary , Thyroid Neoplasms , Humans , Adolescent , Female , Lymphatic Metastasis/pathology , Thyroidectomy/methods , Carcinoma, Papillary/diagnostic imaging , Carcinoma, Papillary/surgery , Carcinoma, Papillary/pathology , Thyroid Neoplasms/pathology , Lymph Nodes/pathology , Neck Dissection
5.
ACS Nano ; 17(24): 25707-25720, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38047808

ABSTRACT

In the pursuit of efficient solar-driven electrocatalytic water splitting for hydrogen production, the intrinsic challenges posed by the sluggish kinetics of anodic oxygen evolution and intermittent sunlight have prompted the need for innovative energy systems. Here, we introduce an approach by coupling the polysulfides oxidation reaction with the hydrogen evolution reaction for energy-saving H2 production, which could be powered by an aqueous zinc-polysulfides battery to construct a self-powered energy system. This unusual hybrid water electrolyzer achieves 300 mA cm-2 at a low cell voltage of 1.14 V, saving electricity consumption by 100.4% from 5.47 to 2.73 kWh per m3 H2 compared to traditional overall water splitting. Benefiting from the favorable reaction kinetics of polysulfides oxidation/reduction, the aqueous zinc-polysulfides battery exhibits an energy efficiency of approximately 89% at 1.0 mA cm-2. Specially, the zinc-polysulfide battery effectively stores intermittent solar energy as chemical energy during light reaction by solar cells. Under an unassisted light reaction, the batteries could release energy to drive H2 production through a hybrid water electrolyzer for uninterrupted hydrogen production. Therefore, the aim of simultaneously generating H2 and eliminating the restrictions of intermittent sunlight is realized by combining the merits of polysulfides redox, an aqueous metal-polysulfide battery, and solar cells. We believe that this concept and utilization of polysulfides redox will inspire further fascinating attempts for the development of sustainable energy via electrocatalytic reactions.

6.
Chem Soc Rev ; 52(23): 8319-8373, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37920962

ABSTRACT

High-entropy alloys (HEAs) comprising five or more elements in near-equiatomic proportions have attracted ever increasing attention for their distinctive properties, such as exceptional strength, corrosion resistance, high hardness, and excellent ductility. The presence of multiple adjacent elements in HEAs provides unique opportunities for novel and adaptable active sites. By carefully selecting the element configuration and composition, these active sites can be optimized for specific purposes. Recently, HEAs have been shown to exhibit remarkable performance in electrocatalytic reactions. Further activity improvement of HEAs is necessary to determine their active sites, investigate the interactions between constituent elements, and understand the reaction mechanisms. Accordingly, a comprehensive review is imperative to capture the advancements in this burgeoning field. In this review, we provide a detailed account of the recent advances in synthetic methods, design principles, and characterization technologies for HEA-based electrocatalysts. Moreover, we discuss the diverse applications of HEAs in electrocatalytic energy conversion reactions, including the hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and alcohol oxidation reaction. By comprehensively covering these topics, we aim to elucidate the intricacies of active sites, constituent element interactions, and reaction mechanisms associated with HEAs. Finally, we underscore the imminent challenges and emphasize the significance of both experimental and theoretical perspectives, as well as the potential applications of HEAs in catalysis. We anticipate that this review will encourage further exploration and development of HEAs in electrochemistry-related applications.

7.
Nanomicro Lett ; 15(1): 155, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37337062

ABSTRACT

Hydrazine-assisted water electrolysis is a promising energy conversion technology for highly efficient hydrogen production. Rational design of bifunctional electrocatalysts, which can simultaneously accelerate hydrogen evolution reaction (HER)/hydrazine oxidation reaction (HzOR) kinetics, is the key step. Herein, we demonstrate the development of ultrathin P/Fe co-doped NiSe2 nanosheets supported on modified Ni foam (P/Fe-NiSe2) synthesized through a facile electrodeposition process and subsequent heat treatment. Based on electrochemical measurements, characterizations, and density functional theory calculations, a favorable "2 + 2" reaction mechanism with a two-step HER process and a two-step HzOR step was fully proved and the specific effect of P doping on HzOR kinetics was investigated. P/Fe-NiSe2 thus yields an impressive electrocatalytic performance, delivering a high current density of 100 mA cm-2 with potentials of - 168 and 200 mV for HER and HzOR, respectively. Additionally, P/Fe-NiSe2 can work efficiently for hydrazine-assisted water electrolysis and Zn-Hydrazine (Zn-Hz) battery, making it promising for practical application.

8.
ACS Nano ; 17(11): 10965-10975, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37265321

ABSTRACT

Hydrazine-assisted water electrolysis presents a promising energy conversion technology for highly efficient hydrogen production. Owing to the potential coincidence region between hydrogen evolution reaction (HER) and hydrazine electro-oxidation, hydrazine oxidation reaction (HzOR) exhibits specific advantages on strategy combination, device construction, and application expansion. Herein, we report a bifunctional electrocatalyst of porous Ni foam-supported interfacial heterogeneous Ni2P/Co2P microspheres (denoted NiCoP/NF), which takes full advantage of this potential coincidence region. Thanks to the 3D microsphere structure and strong interfacial coupling effects between Ni2P and Co2P, NiCoP/NF demonstrates excellent bifunctional electrocatalytic performance, requiring ultralow overpotentials of 70 and 230 mV at 10 mA cm-2 for HER and HzOR, respectively. When using NiCoP/NF as both electrodes, HzOR-assisted water electrolysis exhibits considerably decreased potentials compared with the electro-oxidation of other chemical substrates. Furthermore, the potential coincidence region of 0.1 V makes the application of self-activated/propelled hydrazine-assisted alkaline seawater electrolysis, hydrazine-containing wastewater treatment, and Zn-hydrazine (Zn-Hz) battery realistic. The concept of potential coincidence region provided in this work has significant implications for water electrolysis and other related applications.

9.
Small ; 19(27): e2300194, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36965012

ABSTRACT

Versatile electrocatalysis at higher current densities for natural seawater splitting to produce hydrogen demands active and robust catalysts to overcome the severe chloride corrosion, competing chlorine evolution, and catalyst poisoning. Hereto, the core-shell-structured heterostructures composed of amorphous NiFe hydroxide layer capped Ni3 S2 nanopyramids which are directly grown on nickel foam skeleton (NiS@LDH/NF) are rationally prepared to regulate cooperatively electronic structure and mass transport for boosting oxygen evolution reaction (OER) performance at larger current densities. The prepared NiS@LDH/NF delivers the anodic current density of 1000 mA cm-2 at the overpotential of 341 mV in 1.0 m KOH seawater. The feasible surface reconstruction of Ni3 S2 -FeNi LDH interfaces improves the chemical stability and corrosion resistance, ensuring the robust electrocatalytic activity in seawater electrolytes for continuous and stable oxygen evolution without any hypochlorite production. Meanwhile, the designed Ni3 S2 nanopyramids coated with FeNi2 P layer (NiS@FeNiP/NF) still exhibit the improved hydrogen evolution reaction (HER) activity in 1.0 m KOH seawater. Furthermore, the NiS@FeNiP/NF||NiS@LDH/NF pair requires cell voltage of 1.636 V to attain 100 mA cm-2 with a 100% Faradaic efficiency, exhibiting tremendous potential for hydrogen production from seawater.

10.
Braz J Psychiatry ; 45(3): 216-225, 2023.
Article in English | MEDLINE | ID: mdl-36753614

ABSTRACT

OBJECTIVE: Mortality rate is a general indicator which can be used to measure care and management of schizophrenia. This cohort study evaluated the standardized mortality ratios (SMRs) of all-cause mortality and life-years lost (LYLs) in patients with schizophrenia under a community care program in China. METHODS: Data were obtained from the National Community Care Program System for Severe Mental Disorders. A total of 99,214 patients diagnosed with schizophrenia were enrolled before December 2014 and followed between 2015 and 2019. A total of 9,483 patients died. Crude mortality rates (CMRs) and SMRs were then stratified by natural vs. unnatural causes, and major groups of death were standardized according to the 2010 National Population SMRs. The corresponding LYLs at birth were also calculated by gender and age. RESULTS: The SMRs of patients with schizophrenia were significantly elevated during the study period, with an overall SMR of 4.98 (95%CI 2.67-7.32). Neoplasms, cardiovascular diseases, cerebrovascular diseases, external injuries, and poisonings were the most significant causes of death among patients with schizophrenia compared to the general population. The mean LYLs of patients with schizophrenia were 15.28 (95%CI 13.26-17.30). Males with schizophrenia lost 15.82 life-years (95%CI 13.48-18.16), and females lost 14.59 life-years (95%CI 13.12-16.06). CONCLUSIONS: Patients with schizophrenia under community care had a high mortality rate in our study, even though mental health services have been integrated into the general healthcare system in China to narrow treatment gaps in mental health for > 10 years. In terms of mortality outcome indicators, effective and quality mental health services still have a long way to go. The current study demonstrates the potential for improved prevention and treatment of individuals with schizophrenia under community care.


Subject(s)
Schizophrenia , Male , Female , Infant, Newborn , Humans , Schizophrenia/therapy , Follow-Up Studies , Cohort Studies , Cause of Death , Mental Health
11.
Phys Imaging Radiat Oncol ; 25: 100408, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36655215

ABSTRACT

Background and purpose: With deep-learning, gross tumour volume (GTV) auto-segmentation has substantially been improved, but still substantial manual corrections are needed. With interactive deep-learning (iDL), manual corrections can be used to update a deep-learning tool while delineating, minimising the input to achieve acceptable segmentations. We present an iDL tool for GTV segmentation that took annotated slices as input and simulated its performance on a head and neck cancer (HNC) dataset. Materials and methods: Multimodal image data of 204 HNC patients with clinical tumour and lymph node GTV delineations were used. A baseline convolutional neural network (CNN) was trained (n = 107 training, n = 22 validation) and tested (n = 24). Subsequently, user input was simulated on initial test set by replacing one or more of predicted slices with ground truth delineation, followed by re-training the CNN. The objective was to optimise re-training parameters and simulate slice selection scenarios while limiting annotations to maximally-five slices. The remaining 51 patients were used as an independent test set, where Dice similarity coefficient (DSC), mean surface distance (MSD), and 95% Hausdorff distance (HD95%) were assessed at baseline and after every update. Results: Median segmentation accuracy at baseline was DSC = 0.65, MSD = 4.3 mm, HD95% = 17.5 mm. Updating CNN using three slices equally sampled from the craniocaudal axis of the GTV in the first round, followed by two rounds of annotating one extra slice, gave the best results. The accuracy improved to DSC = 0.82, MSD = 1.6 mm, HD95% = 4.8 mm. Every CNN update took 30 s. Conclusions: The presented iDL tool achieved substantial segmentation improvement with only five annotated slices.

12.
Small ; 19(5): e2206196, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36408769

ABSTRACT

Heterogeneous electrocatalysis typically depends on the surface electronic states of active sites. Modulating the surface charge state of an electrocatalysts can be employed to improve performance. Among all the investigated materials, nickel (Ni)-based catalysts are the only non-noble-metal-based alternatives for both hydrogen oxidation and evolution reactions (HOR and HER) in alkaline electrolyte, while their activities should be further improved because of the unfavorable hydrogen adsorption behavior. Hereto, Ni with exceptional HOR electrocatalytic performance by changing the d-band center by metal oxides interface coupling formed in situ is endowed. The resultant MoO2 coupled Ni heterostructures exhibit an apparent HOR activity, even approaching to that of commercial 20% Pt/C benchmark, but with better long-term stability in alkaline electrolyte. An exceptional HER performance is also achieved by the Ni-MoO2 heterostructures. The experiment results are rationalized by the theoretical calculations, which indicate that coupling MoO2 with Ni results in the downshift of d-band center of Ni, and thus weakens hydrogen adsorption and benefits for hydroxyl adsorption. This concept is further proved by other metal oxides (e.g., CeO2 , V2 O3 , WO3 , Cr2 O3 )-formed Ni-based heterostructures to engineer efficient hydrogen electrocatalysts.

13.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 45(3): 216-225, May-June 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1447591

ABSTRACT

Objective: Mortality rate is a general indicator which can be used to measure care and management of schizophrenia. This cohort study evaluated the standardized mortality ratios (SMRs) of all-cause mortality and life-years lost (LYLs) in patients with schizophrenia under a community care program in China. Methods: Data were obtained from the National Community Care Program System for Severe Mental Disorders. A total of 99,214 patients diagnosed with schizophrenia were enrolled before December 2014 and followed between 2015 and 2019. A total of 9,483 patients died. Crude mortality rates (CMRs) and SMRs were then stratified by natural vs. unnatural causes, and major groups of death were standardized according to the 2010 National Population SMRs. The corresponding LYLs at birth were also calculated by gender and age. Results: The SMRs of patients with schizophrenia were significantly elevated during the study period, with an overall SMR of 4.98 (95%CI 2.67-7.32). Neoplasms, cardiovascular diseases, cerebrovascular diseases, external injuries, and poisonings were the most significant causes of death among patients with schizophrenia compared to the general population. The mean LYLs of patients with schizophrenia were 15.28 (95%CI 13.26-17.30). Males with schizophrenia lost 15.82 life-years (95%CI 13.48-18.16), and females lost 14.59 life-years (95%CI 13.12-16.06). Conclusions: Patients with schizophrenia under community care had a high mortality rate in our study, even though mental health services have been integrated into the general healthcare system in China to narrow treatment gaps in mental health for > 10 years. In terms of mortality outcome indicators, effective and quality mental health services still have a long way to go. The current study demonstrates the potential for improved prevention and treatment of individuals with schizophrenia under community care.

14.
Acta Oncol ; 61(2): 120-126, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34979878

ABSTRACT

PURPOSE: The study aimed to investigate the pattern of failure and describe compromises in the definition and coverage of the target for patients treated with curatively intended radiotherapy (RT) for sinonasal cancer (SNC). METHODS AND MATERIAL: Patients treated with curatively intended RT in 2008-2015 in Denmark for SNC were eligible for the retrospective cohort study. Information regarding diagnosis and treatment was retrieved from the national database of the Danish Head and Neck Cancer Group (DAHANCA). Imaging from the diagnosis of recurrences was collected, and the point of origin (PO) of the recurrent tumour was estimated. All treatment plans were collected and reviewed with the focus on target coverage, manual modifications of target volumes, and dose to organs at risk (OARs) above defined constraints. RESULTS: A total of 184 patients were included in the analysis, and 76 (41%) relapsed. The majority of recurrences involved T-site (76%). Recurrence imaging of 39 patients was evaluated, and PO was established. Twenty-nine POs (74%) were located within the CTV, and the minimum dose to the PO was median 64.1 Gy (3.1-70.7). The criteria for target coverage (V95%) was not met in 89/184 (48%) of the CTV and 131/184 (71%) of the PTV. A total of 24% of CTVs had been manually modified to spare OARs of high-dose irradiation. No difference in target volume modifications was observed between patients who suffered recurrence and patients with lasting remission. CONCLUSION: The majority of relapses after radical treatment of SNC were located in the T-site (the primary tumour site). Multiple compromises with regards to target coverage and tolerance levels for OARs in the sinonasal region, as defined from RT guidelines, were taken. No common practice in this respect could be derived from the study.


Subject(s)
Paranasal Sinus Neoplasms , Radiotherapy, Conformal , Radiotherapy, Intensity-Modulated , Denmark/epidemiology , Humans , Neoplasm Recurrence, Local/epidemiology , Neoplasm Recurrence, Local/radiotherapy , Paranasal Sinus Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Retrospective Studies
15.
J Colloid Interface Sci ; 606(Pt 1): 544-555, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34416450

ABSTRACT

Photocatalysts with highly efficient charge separation are of critical significance for improving photocatalytic hydrogen production performance. Herein, a cost-effective and high-performance composite photocatalyst, cobalt-phosphonate-derived defect-rich cobalt pyrophosphate hybrids (CoPPi-M) modified Cd0.5Zn0.5S is rationally devised via defect and interface engineering, in which the co-catalyst CoPPi-M delivers a strong interaction with host photocatalyst Cd0.5Zn0.5S, rendering Cd0.5Zn0.5S/CoPPi-M with a remarkably improved efficiency of charge separation and migration. Besides, Cd0.5Zn0.5S/CoPPi-M exhibits a hydrophilic surface with ample access to electrons and a strong reduction ability of electrons. Benefiting from these advantages, the integration of defect-rich cobalt pyrophosphate and Cd0.5Zn0.5S enables Cd0.5Zn0.5S/CoPPi-M-5% with high photocatalytic H2 production rate of 6.87 mmol g-1h-1, which is 2.46 times higher than that of pristine Cd0.5Zn0.5S, and the notable apparent quantum efficiency (AQE) is 20.7% at 420 nm. This work provides a promising route for promoting the photocatalytic performance of non-precious hybrid photocatalyst via defect and interface engineering, and advances energy-generation and environment-restoration devices.


Subject(s)
Cobalt , Hydrogen , Cadmium , Diphosphates , Zinc
16.
Acta Oncol ; 60(11): 1399-1406, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34264157

ABSTRACT

BACKGROUND: Manual delineation of gross tumor volume (GTV) is essential for radiotherapy treatment planning, but it is time-consuming and suffers inter-observer variability (IOV). In clinics, CT, PET, and MRI are used to inform delineation accuracy due to their different complementary characteristics. This study aimed to investigate deep learning to assist GTV delineation in head and neck squamous cell carcinoma (HNSCC) by comparing various modality combinations. MATERIALS AND METHODS: This retrospective study had 153 patients with multiple sites of HNSCC including their planning CT, PET, and MRI (T1-weighted and T2-weighted). Clinical delineations of gross tumor volume (GTV-T) and involved lymph nodes (GTV-N) were collected as the ground truth. The dataset was randomly divided into 92 patients for training, 31 for validation, and 30 for testing. We applied a residual 3 D UNet as the deep learning architecture. We independently trained the UNet with four different modality combinations (CT-PET-MRI, CT-MRI, CT-PET, and PET-MRI). Additionally, analogical to post-processing, an average fusion of three bi-modality combinations (CT-PET, CT-MRI, and PET-MRI) was produced as an ensemble. Segmentation accuracy was evaluated on the test set, using Dice similarity coefficient (Dice), Hausdorff Distance 95 percentile (HD95), and Mean Surface Distance (MSD). RESULTS: All imaging combinations including PET provided similar average scores in range of Dice: 0.72-0.74, HD95: 8.8-9.5 mm, MSD: 2.6-2.8 mm. Only CT-MRI had a lower score with Dice: 0.58, HD95: 12.9 mm, MSD: 3.7 mm. The average of three bi-modality combinations reached Dice: 0.74, HD95: 7.9 mm, MSD: 2.4 mm. CONCLUSION: Multimodal deep learning-based auto segmentation of HNSCC GTV was demonstrated and inclusion of the PET image was shown to be crucial. Training on combined MRI, PET, and CT data provided limited improvements over CT-PET and PET-MRI. However, when combining three bimodal trained networks into an ensemble, promising improvements were shown.


Subject(s)
Deep Learning , Head and Neck Neoplasms , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Humans , Magnetic Resonance Imaging , Positron Emission Tomography Computed Tomography , Retrospective Studies , Tomography, X-Ray Computed
17.
J Colloid Interface Sci ; 594: 113-121, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33756359

ABSTRACT

The "active site isolation" strategy has been proved to be efficient for enhancing the catalytic performance in propane dehydrogenation (PDH). Herein, spatially isolated cobalt oxide sites within nitrogen-doped carbon (NC) layers supported on silicalite-1 zeolite (CoOx@NC/S-1) were synthesized by a two-step process consisting of the pyrolysis of bimetallic Zn/Co zeolitic imidazole frameworks loaded on silicalite-1 (ZnCo-ZIF/S-1) under N2 and the subsequent calcination in air atmosphere. This catalyst possesses exceptional catalytic performance for PDH with the propane conversion of 40% and the propene selectivity of >97%, and no apparent deactivation is observed after 10 h PDH reaction at 600 °C. With intensive characterizations and experiments, it is indicated that the real active sites of CoOx@NC/S-1 are isolated CoO sites during the PDH process. In situ FT-IR spectroscopy shows the same intermediate product (Co-C3H7) during both propane dehydrogenation and propene hydrogenation, indicating that they have a reverse reaction process, and a reaction mechanism for PDH is proposed accordingly.

18.
ACS Appl Mater Interfaces ; 13(10): 12106-12117, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33677963

ABSTRACT

Developing cost-effective and controllable technologies beyond traditional overall N2 electrocatalysis is critical for the large-scale production of NH3 through electrochemical N2 reduction reaction (NRR) under ambient conditions. Herein, the aqueous rechargeable Zn-N2 battery, assembled by coupling the bifunctional cobalt phosphate nanocrystals-loaded heteroatoms-doped carbon nanosheets (CoPi/NPCS) as cathode electrocatalyst and the commercial Zn plate as anode with KOH electrolyte, was fabricated for the sustainable reduction of N2 to NH3 and power generation during discharge process. Benefiting from the desirable active components of cobalt phosphate nanocrystals and the synergistic effect between nanocrystals and carbon substrates, the CoPi/NPCS catalyst exhibits the enhanced NRR and oxygen evolution reaction (OER) performance in alkaline electrolyte. And the cobalt phosphates are confirmed as active components through the associative pathway toward NRR. When measured in the flow battery configuration with gas diffusion electrode by flowing N2 during discharge, this CoPi/NPCS-catalyzed Zn-N2 battery enables the high N2-to-NH3 yield rate of 14.7 µg h-1 mgcat.-1 and Faradaic efficiency of 16.35% at 0.6 V vs Zn2+/Zn, which can be able to maintain stable in discharge processes during cycling tests. Moreover, the impressive power output of the peak power density of 0.49 mW cm-2 and the energy density of 147.6 mWh gzn-1 are still achieved by this Zn-N2 battery, which are both higher than those of previously reported Zn-N2 batteries. This work not only provides the guideline for the rational design of robust and active bifunctional NRR-OER catalysts but also develops a reasonable and promising technology for efficient electrochemical N2-to-NH3 and power generation.

19.
J Colloid Interface Sci ; 589: 25-33, 2021 May.
Article in English | MEDLINE | ID: mdl-33450458

ABSTRACT

The practical application of photocatalytic water splitting for hydrogen evolution hinges on the development of high-efficient and low-cost photocatalysts. Defects engineering has emerged as a promising strategy to enhance photocatalytic activity effectively. Herein, a facile and versatile co-precipitation method is proposed to fabricate mesoporous Cd-Zn-S solid solutions (E-CdxZn1-xS) with abundant surface defects by the inorganic salts formed in the reaction system as self-template. Compared with Cd-Zn-S solid solutions (W-Cd0.65Zn0.35S) prepared by the traditional co-precipitation method, the enhanced specific surface area and abundant surface defects endow E-Cd0.65Zn0.35S with more accessible active sites and effective separation of electron-hole pairs for the photocatalytic water splitting reaction. The E-Cd0.65Zn0.35S solid solution exhibits hydrogen evolution rate of 5.2 mmol h-1 g-1 without loading noble metal as cocatalyst under visible light, which is 1.13 times higher than that of W-Cd0.65Zn0.35S sample. The present work provides a simple, low-cost and prospective strategy for the synthesis of defective Cd-Zn-S solid solutions, and it also delivers guidance to design and develop the advanced visible-light photocatalyst in the future.

20.
Front Plant Sci ; 12: 772644, 2021.
Article in English | MEDLINE | ID: mdl-35251060

ABSTRACT

In summer, high light and elevated temperature are the most common abiotic stresses. The frequent occurrence of monsoon exposes the abaxial surface of soybean [Glycine max (L.) Merr.] leaves to direct solar radiation, resulting in irreversible damage to plant photosynthesis. In this study, chlorophyll a fluorescence was used to evaluate the functional status of photosystem II (PSII) in inverted leaves under elevated temperature and high light. In two consecutive growing seasons, we tested the fluorescence and gas exchange parameters of soybean leaves for 10 days and 15 days (5 days after recovery). Inverted leaves had lower tolerance compared to normal leaves and exhibited lower photosynthetic performance, quantum yield, and electron transport efficiency under combined elevated temperature and high light stress, along with a significant increase in absorption flux per reaction center (RC) and the energy dissipation of the RC, resulting in significantly lower performance indexes (PIABS and PItotal) and net photosynthetic rate (P n ) in inverted leaves. High light and elevated temperature caused irreversible membrane damage in inverted leaves, as photosynthetic performance parameters (P n , PIABS, and PItotal) did not return to control levels after inverted leaves recovered. In conclusion, inverted leaves exhibited lower photosynthetic performance and PSII activity under elevated temperature and high light stress compared to normal leaves.

SELECTION OF CITATIONS
SEARCH DETAIL
...