Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 104(7): 3865-3882, 2024 May.
Article in English | MEDLINE | ID: mdl-38217341

ABSTRACT

BACKGROUND: Soil is a key foundation of crop root growth. There are interactions between root system and soil in multiple ways. The present study aimed to further explore the response of root distribution and morphology to soil physical and chemical environment under maize (Zea mays L.) soybean (Glycine Max L. Merr.) relay strip intercropping (MS) An experiment was carried out aiming to examine the effects of nitrogen (N) applications and interspecific distances on root system and soil environment in MS. The two N application levels, referred to as no N application (NN) and conventional N application (CN), were paired with different interspecific distances: 30, 45 and 60 cm (MS30, MS45 and MS60) and 100 cm of monoculture maize and soybean (MM/SS100). RESULTS: The results demonstrated that MS45 increased the distribution of soil aggregates (> 2 mm) near the crop roots and maize soil nutrients status, which increased by 20.3% and 15.6%. Meanwhile, MS reduced soil bulk density, increased soil porosity and improved soil oxygen content. Optimization of the soil environment facilitated root growth. The MS45 achieved a better result on root distribution and morphology than the other configuration and also increased land productivity. CONCLUSION: Relay intercropped soybean with maize in interspecific row spacing of 45 cm, improved soil physicochemical environment, reshaped root architecture and optimized root spatial distribution of crops to achieve greater land productivity. © 2024 Society of Chemical Industry.


Subject(s)
Agriculture , Soil , Soil/chemistry , Agriculture/methods , Glycine max , Zea mays , Nitrogen/analysis
2.
Nanoscale Res Lett ; 13(1): 349, 2018 Nov 03.
Article in English | MEDLINE | ID: mdl-30392036

ABSTRACT

In this work, we demonstrate that the electromagnetic properties of graphene oligomer can be drastically modified by locally modifications of the chemical potentials. The chemical potential variations of different positions in graphene oligomer have different impacts on both extinction spectra and electromagnetic fields. The flexible tailoring of the localizations of the electromagnetic fields can be achieved by precisely adjusting the chemical potentials of the graphene nanodisks at corresponding positions. The proposed nanostructures in this work lead to the practical applications of graphene-based plasmonic devices such as nanosensing, light trapping and photodetection.

3.
Phys Chem Chem Phys ; 20(24): 16695-16703, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29877522

ABSTRACT

In the mid-infrared and terahertz (THz) regime, graphene supports tunable surface plasmon resonance (SPR) by controlling the chemical potential, which promotes light-matter interaction at the selected wavelength, showing exceptional promise for optoelectronic applications. In this article, we show that the electromagnetic (EM) response of graphene oligomers can be substantially modified by the modification of the local chemical potential, strengthening or reducing the intrinsic plasmonic modes. The effect mechanism is corroborated by a graphene nanocluster composed of 13 nanodisks with D6h symmetry; by transforming to D3h symmetry, the effect mechanism was retained and more available plasmonic resonance modes appeared. The intriguing properties open a new way to design nanodevices made of graphene oligomers with highly efficient photoresponse enhancement and tunable spectral selectivity for highly accurate photodetection.

4.
Nanoscale Res Lett ; 13(1): 113, 2018 Apr 20.
Article in English | MEDLINE | ID: mdl-29679172

ABSTRACT

Originating from the investigation of condensed matter states, the concept of quantum Hall effect and quantum spin Hall effect (QSHE) has recently been expanded to other field of physics and engineering, e.g., photonics and phononics, giving rise to strikingly unconventional edge modes immune to scattering. Here, we present the plasmonic analog of QSHE in graphene plasmonic crystal (GPC) in mid-infrared frequencies. The band inversion occurs when deforming the honeycomb lattice GPCs, which further leads to the topological band gaps and pseudospin features of the edge states. By overlapping the band gaps with different topologies, we numerically simulated the pseudospin-dependent one-way propagation of edge states. The designed GPC may find potential applications in the fields of topological plasmonics and trigger the exploration of the technique of the pseudospin multiplexing in high-density nanophotonic integrated circuits.

5.
Opt Express ; 25(19): 22587-22594, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-29041566

ABSTRACT

A two-dimensional graphene plasmonic crystal composed of periodically arranged graphene nanodisks is proposed. We show that the band topology effect due to inversion symmetry broken in the proposed plasmonic crystals is obtained by tuning the chemical potential of graphene nanodisks. Utilizing this kind of plasmonic crystal, we constructed N-shaped channels and realized topologically edged transmission within the band gap. Furthermore, topologically protected exterior boundary propagation, which is immune to backscattering, was also achieved by modifying the chemical potential of graphene nanodisks. The proposed graphene plasmonic crystals with ultracompact size are subject only to intrinsic material loss, which may find potential applications in the fields of topological plasmonics and high density nanophotonic integrated systems.

6.
Sci Rep ; 7(1): 9588, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28852027

ABSTRACT

The Dirac-like cone dispersion of the photonic crystal induced by the three-fold accidental degeneracy at the Brillouin center is calculated in this paper. Such photonic crystals can be mapped to zero-refractive-index materials at the vicinity of the Dirac-like point frequency, and utilized to construct beam splitter of high transmission efficiency. The splitting ratio is studied as a function of the position of the input/output waveguides. Furthermore, variant beam splitters with asymmetric structures, bulk defects, and some certain bending angles are numerically simulated. Finally, we show that 1 × 2 to 1 × N beam splitting can be realized with high transmission efficiency in such a zero-refractive-index photonic crystal at the frequency of Dirac-like point. The proposed structure could be a fundamental component of the high density photonic integrated circuit technique.

7.
Nanomaterials (Basel) ; 7(9)2017 Aug 26.
Article in English | MEDLINE | ID: mdl-28846593

ABSTRACT

In this article, the lineshape of Fano-like resonance of graphene plasmonic oligomers is investigated as a function of the parameters of the nanostructures, such as disk size, chemical potential and electron momentum relaxation time in mid-infrared frequencies. Also, the mechanism of the optimization is discussed. Furthermore, the environmental index sensing effect of the proposed structure is revealed, and a figure of merit of 25.58 is achieved with the optimized graphene oligomer. The proposed nanostructure could find applications in the fields of chemical or biochemical sensing.

8.
Phys Chem Chem Phys ; 19(22): 14671-14679, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28537636

ABSTRACT

In this paper, we propose a plasmonic tetramer composed of coupled graphene nanodisks. The transformation from the isolated to the collective modes of the proposed structure is investigated by analysing the whispering-gallery modes and extinction spectra with various inter-nanodisk gap distances. In addition, the effect of introducing a central nanodisk into the tetramer on the extinction spectra is explored, which leads to Fano resonance. Furthermore, the refractive index sensing properties of the proposed graphene plasmonic oligomer have been demonstrated. The proposed nanostructures might pave the road toward the application of graphene plasmonic oligomers in fields such as nanophotonics, and chemical or biochemical sensing.

9.
Nanoscale Res Lett ; 12(1): 374, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28549379

ABSTRACT

A graphene-based on-chip plasmonic nanostructure composed of a plasmonic bus waveguide side-coupled with a U-shaped and a rectangular nanocavities has been proposed and modeled by using the finite element method in this paper. The dynamic tunability of the plasmon-induced transparency (PIT) windows has been investigated. The results reveal that the PIT effects can be tuned via modifying the chemical potential of the nanocavities and plasmonic bus waveguide or by varying the geometrical parameters including the location and width of the rectangular nanocavity. Further, the proposed plasmonic nanostructure can be used as a plasmonic refractive index sensor with a sensing sensibility of 333.3 nm/refractive index unit (RIU) at the the PIT transmission peak. Slow light effect is also realized in the PIT system. The proposed nanostructure may pave a new way towards the realization of graphene-based on-chip integrated nanophotonic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...