Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 16(753): eado2817, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924429

ABSTRACT

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in variants that can escape neutralization by therapeutic antibodies. Here, we describe AZD3152, a SARS-CoV-2-neutralizing monoclonal antibody designed to provide improved potency and coverage against emerging variants. AZD3152 binds to the back left shoulder of the SARS-CoV-2 spike protein receptor binding domain and prevents interaction with the human angiotensin-converting enzyme 2 receptor. AZD3152 potently neutralized a broad panel of pseudovirus variants, including the currently dominant Omicron variant JN.1 but has reduced potency against XBB subvariants containing F456L. In vitro studies confirmed F456L resistance and additionally identified T415I and K458E as escape mutations. In a Syrian hamster challenge model, prophylactic administration of AZD3152 protected hamsters from weight loss and inflammation-related lung pathologies and reduced lung viral load. In the phase 1 sentinel safety cohort of the ongoing SUPERNOVA study (ClinicalTrials.gov: NCT05648110), a single 600-mg intramuscular injection of AZD5156 (containing 300 mg each of AZD3152 and cilgavimab) was well tolerated in adults through day 91. Observed serum concentrations of AZD3152 through day 91 were similar to those observed with cilgavimab and consistent with predictions for AZD7442, a SARS-CoV-2-neutralizing antibody combination of cilgavimab and tixagevimab, in a population pharmacokinetic model. On the basis of its pharmacokinetic characteristics, AZD3152 is predicted to provide durable protection against symptomatic coronavirus disease 2019 caused by susceptible SARS-CoV-2 variants, such as JN.1, in humans.


Subject(s)
Antibodies, Neutralizing , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , SARS-CoV-2/drug effects , Humans , COVID-19/virology , Antibodies, Neutralizing/immunology , Spike Glycoprotein, Coronavirus/metabolism , Cricetinae , COVID-19 Drug Treatment , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacokinetics , Mesocricetus , Female , Male , Adult , Antibodies, Viral/immunology , Mutation/genetics , Antibodies, Monoclonal , Angiotensin-Converting Enzyme 2/metabolism , Viral Load/drug effects
2.
J Chromatogr A ; 1724: 464908, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38669943

ABSTRACT

Affinity tags are frequently engineered into recombinant proteins to facilitate purification. Although this technique is powerful, removal of the tag is desired because the tag can interfere with biological activity and can potentially increase the immunogenicity of therapeutic proteins. Tag removal is complex, as it requires adding expensive protease enzymes. To overcome this limitation, split intein based affinity purification systems have been developed in which a CC-intein tag is engineered into a protein of interest for binding to a NC-intein peptide ligand fixed to a chromatographic support. Tag removal in these systems is achieved by creating an active intein-complex during protein capture, which triggers a precise self-cleavage reaction. In this work, we show applications of a new split intein system, Cytiva™ ProteinSelect™. One advantage of the new system is that the NC-intein ligand can be robustly produced and conjugated to large volumes of resin for production of gram scale proteins. SARS-CoV-2 spike protein receptor binding domain and a Bispecific T Cell Engager in this work were successfully captured on the affinity resin and scaled 10-fold. Another advantage of this system is the ability to sanitize the resin with sodium hydroxide without loosing the 10-20 g/L binding capacity. Binding studies with IL-1b and IFNAR-1 ECD showed that the resin can be regenerated and sanitized for up to 50 cycles without loosing binding capacity. Additionally, after several cycles of sanitization, binding capacity was retained for the SARS-CoV-2 spike protein receptor binding domain and a Bispecific T Cell Engager. As with other split intein systems, optimization was needed to achieve ideal expression and recovery. The N-terminal amino acid sequence of the protein of interest required engineering to enable the cleavage reaction. Additionally, ensuring the stability of the CC-intein tag was important to prevent premature cleavage or truncation. Controlling the hold time of the expression product and the prevention of protease activity prior to purification was needed. These results demonstrate the feasibility of the Cytiva™ ProteinSelect™ system to be used in academic and industrial research and development laboratories for the purification of novel proteins expressed in either bacterial or mammalian systems.


Subject(s)
Chromatography, Affinity , Inteins , Chromatography, Affinity/methods , Humans , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/chemistry , Interleukin-1beta/metabolism , Interleukin-1beta/genetics
SELECTION OF CITATIONS
SEARCH DETAIL