Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 269(Pt 1): 131900, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677675

ABSTRACT

Liposomes were modified with different proportions of ß-conglycinin (7S) and glycinin (11S) to form Lip-7S and Lip-11S. The morphology, interaction and in vitro simulated digestion of liposomes were studied. The particle size of Lip-7S was smaller than that of Lip-11S. When the values of Lip-7S and Lip-11S were 1:1 and 1:0.75, respectively, the ζ-potential had the maximum absolute value and the dispersion of the system was good. The results of multispectral analysis showed that hydrogen-bond and hydrophobic interaction dominated protein-modified liposomes, the protein structure adsorbed on the surface of liposomes changed, the content of α-helix decreased, and the structure of protein-modified liposomes became denser. The surface hydrophobicity and micropolarity of liposomes decreased with the increase of protein ratio, and tended to be stable after Lip-7S (1:1) and Lip-11S (1:0.75). Differential scanning calorimetry showed that Lip-7S had higher phase transition temperature (≥170.5 °C) and better rigid structure. During simulated digestion, Lip-7S (22.5 %) released less Morin than Lip (40.6 %) and Lip-11S (26.2 %), and effectively delayed the release of FFAs. The environmental stability of liposomes was effectively improved by protein modification, and 7S had better modification effect than 11S. This provides a theoretical basis for 7S and 11S modified liposomes, and also provides a data reference for searching for new materials for stabilization of liposomes.


Subject(s)
Antigens, Plant , Globulins , Liposomes , Seed Storage Proteins , Soybean Proteins , Globulins/chemistry , Seed Storage Proteins/chemistry , Soybean Proteins/chemistry , Liposomes/chemistry , Antigens, Plant/chemistry , Hydrophobic and Hydrophilic Interactions , Digestion , Particle Size , Hydrogen Bonding
2.
Int J Biol Macromol ; 256(Pt 1): 128344, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38007016

ABSTRACT

In this study, sucrase was added to convert non-reducing sugars into reducing sugars in skim obtained by enzyme-assisted aqueous extraction processing (EAEP), then the variation of soy protein hydrolysates (SPH) from the skim under different Maillard reaction times were studied. We conducted one-factor experiment and selected 2 mg/mL sucrase for enzymatic hydrolysis for 2 h. The structure of SPH was investigated by Fourier transform infrared spectroscopy, intrinsic fluorescence spectroscopy, and amino acid composition. Results showed that the Maillard reaction loosened the SPH structure and produced new functional groups. Sensory evaluation, electronic tongue, electronic nose and GC-MS were used to study the sensory characteristics of SPH, we found that the bitterness value was significantly reduced to 1.71 from 4.63 after 2 h of the Maillard reaction. The change of bitterness was related to amino acid composition and the production of pyrazine. Additionally, the iron reduction ability, DPPH free radical scavenging ability, and emulsifying activity reached the highest at 2 h of reaction with 0.80, 73.94 %, and 56.09 %. The solubility, emulsifying stability, and foaming capacity increased and gradually stabilized with the increasing reaction time. Therefore, this paper presents an effective method for generating SPH with low bitterness and high functional properties.


Subject(s)
Maillard Reaction , Soybean Proteins , Hydrolysis , Soybean Proteins/chemistry , Protein Hydrolysates/chemistry , Sugars , Amino Acids
3.
ACS Appl Mater Interfaces ; 15(36): 43003-43015, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37650377

ABSTRACT

All-polymer piezoelectric elastomers that integrate self-powered, soft, and elastic performance are attractive in the fields of flexible wearable electronics and human-machine interfaces. However, a lack of adhesion and UV-blocking performances greatly hinders the potential applications of elastomers in these emerging fields. Here, a high-performance piezoelectric elastomer with piezoelectricity, mechanical robustness, self-adhesion, and UV-resistance was developed by using poly(vinylidene fluoride) (PVDF), acrylonitrile (AN), acrylamide (AAm), and oxidized tannic acid (OTA) (named PPO). In this design, the dipole-dipole interactions between the PVDF and PAN chains promoted the content of ß-PVDF, endowing high piezoelectric coefficient (d33, 58 pC/N). Besides, high stretchability (∼500%), supercompressibility (∼98%), low Young's modulus (∼0.02 MPa), and remarkable elasticity (∼13.8% hysteresis ratio) were achieved simultaneously for the elastomers. Inspired by the mussel adhesion chemistry, the OTA containing abundant catechol and quinone groups provided high adhesion (93.26 kPa to wood) and an exceptional UV-blocking property (∼99.9%). In addition, the elastomers can produce a reliable electric signal output (Vocmax = 237 mV) and show a fast response (24 ms) when subjected to external force. Furthermore, the elastomer can be easily assembled as a wearable sensor for human physiological (body pulse and speech identification) monitoring and communication.

4.
Adv Healthc Mater ; 12(13): e2203306, 2023 05.
Article in English | MEDLINE | ID: mdl-36708290

ABSTRACT

Photothermal hydrogel adhesives have yielded promising results for wound closure and infected wound treatment in recent years. However, photothermal hydrogel bioadhesives with on-demand removability without additional nanomaterials-based photothermal agents have rarely been reported in the literature. In this work, an injectable intrinsic photothermal hydrogel bioadhesive with an on-demand removal trait is developed through dynamic cross-linking of gelatin (Gel), tannic acid (TA) quinone, and borax for closing skin incisions and accelerating methicillin-resistant Staphylococcus aureus (MRSA) infected wound healing. The TA quinone containing polyphenol and quinone groups with multifunctional adhesiveness and intrinsic photothermal performance confer the hydrogel adhesive with near-infrared (NIR) responsive antibacterial activity. The cross-linking of pH-sensitive boronic ester (polyphenol-B) and Schiff base bonds endow the hydrogel with great self-healing capacity and on-demand removability. Moreover, the hydrogel possesses good biocompatibility, injectability, and hemostasis. The in vivo experiment in a rat cutaneous incision model and full-thickness MRSA-infected wound model indicate that the smart hydrogel can close wounds efficiently and treat infected ones, demonstrating its superiority in noninvasive treatment of cutaneous incisions and enhancing infected full-thickness wound healing.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Animals , Rats , Hydrogels/pharmacology , Anti-Bacterial Agents/pharmacology , Polyphenols , Quinones , Wound Healing
5.
ACS Appl Mater Interfaces ; 15(1): 1736-1747, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36571179

ABSTRACT

Piezoelectric sensors are widely used in wearable devices to mimic the functions of human skin. However, it is considerably challenging to develop soft piezoelectric materials that can exhibit high sensitivity, stretchability, super elasticity, and suitable modulus. In this study, a soft skin-like piezoelectric polymer elastomer composed of poly(vinylidene fluoride) (PVDF) and a novel elastic substrate polyacrylonitrile is prepared by combining the radical polymerization and freeze-drying processes. Dipole-dipole interaction results in the phase transition of PVDF (α phase to ß phase), which enhances the electrical and mechanical performances. Thus, we achieve a high piezoelectric coefficient (d33max = 63 pC/N), good stretchability (211.3-259.3%), super compressibility (subjected to 99% compression strain without cracking), and super elasticity (100% recovery after extreme compression) simultaneously for the elastomer. The soft composite elastomer produces excellent electrical signal output (Vocmax = 253 mV) and responds rapidly (15 ms) to stress-induced polarization effects. In addition, the elastomer-based sensor accurately detects various physiological signals such as gestures, throat vibrations, and pulse waves. The developed elastomers exhibit excellent mechanical properties and high sensitivity, which helps facilitate their application as artificial electronic skin to sense subtle external pressure in real time.


Subject(s)
Elastomers , Wearable Electronic Devices , Humans , Elastomers/chemistry , Polymers , Polyvinyls/chemistry
6.
Int J Biol Macromol ; 212: 536-546, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35618093

ABSTRACT

Co-precipitation was a novel method for improving the functional properties of pure proteins. To investigate the mechanism of this effect, different protein proportions of soy-wheat co-precipitated protein were extracted by isoelectric point co-precipitation. Soy protein isolate (SPI) was mainly linked to wheat protein (WP) through non-covalent forces and disulfide bonds as determined by circular dichroism spectroscopy, disulfide bond, protein fraction extraction, interaction, and molecular modeling. Amino acid analysis indicated that co-precipitation could increase wheat lysine content. Furthermore, co-precipitation improved multiple functional properties of pure protein, and the emulsifying and foaming properties of the composite system with a mass ratio of 7:3 outperformed those of other systems. At the same time, correlation analysis revealed that protein structure and intermolecular forces significantly affected its functional properties. This study provided some useful and interesting information for the development and application of protein-protein systems with diverse functional properties.


Subject(s)
Soybean Proteins , Triticum , Disulfides , Isoelectric Point , Soybean Proteins/chemistry , Triticum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL