Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
2.
PeerJ ; 10: e13523, 2022.
Article in English | MEDLINE | ID: mdl-35860039

ABSTRACT

Previous reports have indicated that natural muscone has neuroprotective effects against cerebral hypoxia injury; however, little is known in regards to its pharmacological mechanism. In this study, we tried to evaluate the neuroprotective effects and mechanisms of muscone against cerebral hypoxia injury using an in vitro model. The cerebral hypoxia injury cell model was produced by hypoxia/reoxygenation (H/R). The cell viability and apoptosis were measured using the cell counting Kit-8 and the Annexin V-FITC/PI Apoptosis Detection kit, respectively. To screen microRNAs regulated by muscone, we analyzed the gene expression datasets of GSE84216 retrieved from gene expression omnibus (GEO). Here, it was demonstrated that muscone treatment significantly alleviated the cell apoptosis, oxidative stress and inflammation in H/R-exposed neurons. Subsequently, through analyzing GSE84216 from the GEO database, miR-142-5p was markedly upregulated by treatment of muscone in this cell model of cerebral hypoxia injury. Further experiments revealed that downregulation of miR-142-5p eliminated the neuroprotective effects of muscone against H/R induced neuronal injury. Additionally, high mobility group box 1 (HMGB1), an important inflammatory factor, was identified as a direct target of miR-142-5p in neurons. Meanwhile, we further demonstrated that muscone could reduce the expression of HMGB1 by upregulating miR-142-5p expression, which subsequently resulted in the inactivation of TLR4/NF-κB pathway, finally leading to the improvement of cell injury in H/R-exposed neurons. Overall, we demonstrate for the first time that muscone treatment alleviates cerebral hypoxia injury in in vitro experiments through blocking activation of the TLR4/NF-κB signaling pathway by targeting HMGB1, suggesting that muscone may serve as a potential therapeutic drug for treating cerebral hypoxia injury.


Subject(s)
HMGB1 Protein , Hypoxia, Brain , MicroRNAs , Neuroprotective Agents , HMGB1 Protein/genetics , Hypoxia/drug therapy , Hypoxia, Brain/metabolism , MicroRNAs/genetics , Neurons/metabolism , Neuroprotective Agents/pharmacology , NF-kappa B/genetics , Toll-Like Receptor 4/genetics
3.
Phys Chem Chem Phys ; 24(12): 7451-7457, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35274655

ABSTRACT

Perovskite quantum dots (PQDs) are promising interface modification materials for perovskite solar cells (PSCs). However, due to the limitation of the preparation method, it is hard to use PQDs as substrates for the growth of perovskite films by the common solution process. In this work, by introducing the rare earth element Ce into PQDs with the vacuum freezing and drying technology, we have successfully improved the solvent stability of PQDs. Moreover, we propose a technology, PQD dynamically mediated growth of perovskite film (PDMG), to prepare high-quality perovskite films, which can avoid the formation of PQD charge-blocking layers. Thanks to the improvement of perovskite crystallinity and the charge transport ability, the PCE is improved from 10.44% to 12.14% for CsPbI2Br PSCs and from 14.43% to 16.38% for CsPbI3 PSCs. Our work opens an avenue for using PQDs as substrates in the fabrication of highly efficient PSCs.

4.
Phys Chem Chem Phys ; 23(41): 23818-23826, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34647116

ABSTRACT

In recent years, although the power conversion efficiency (PCE) of thermally stable all-inorganic CsPbI3 perovskite solar cells (PSCs) had shown a great progress, the most reported CsPbI3 PSCs suffered from the large open-circuit voltage (Voc) loss, which is related to severe nonradiative recombination and a mismatch in energy level at the transport layer/perovskite interface. In this work, europium acetate (EuAc3) as a multifunction interface material is chosen to modify the TiO2/perovskite interface, the crystal quality of CsPbI3 perovskite films is improved, and both bulk and interfacial defects are reduced effectively. Meanwhile, the energy levels arrangement between TiO2 and CsPbI3 perovskites is also optimized, corresponding the raised built-in electric field afford a strength force to accelerate the transport and extraction of charge carriers from CsPbI3 perovskites to TiO2. As a result, the performance of CsPbI3 PSCs is largely enhanced with the PCE of 16.76%. When an Ag electrode was replaced by Au, the PCE further improves to 17.92%, which is the highest for CsPbI3 PSCs with P3HT as the HTL ever reported. Besides, the CsPbI3 PSC with the EuAc3 modification layer maintains 84% of the initial PCE under continuous UV irradiation for 250 h in a nitrogen filled glovebox, being obviously higher than the control devices with only 40% of the initial PCE after UV irradiation for 100 h in the same environment.

5.
J Hepatocell Carcinoma ; 8: 951-961, 2021.
Article in English | MEDLINE | ID: mdl-34430511

ABSTRACT

INTRODUCTION: Genome-wide association studies identified susceptibility loci in the major histocompatibility complex region for hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). However, the causal variants underlying HBV-related HCC pathogenesis remain elusive. METHODS: With a total of 1,161 HBV-related HCC cases and 1,353 chronic HBV carriers without HCC, we imputed human leukocyte antigen (HLA) variants based on a Chinese HLA reference panel and evaluated the associations of these variants with the risk of HBV-related HCC. Conditional analyses were used to identify independent signals associated with the risk of HBV-related HCC (P false-discovery rate (FDR) <0.20). A total of 14,930 variants within the MHC region were genotyped or imputed. RESULTS: We identified two variants, rs114401688 (P = 1.05 × 10-6, PFDR = 2.43 × 10-3) and rs115126566 (P = 9.04 × 10-5, PFDR = 1.77 × 10-1), that are independently associated with the risk of HBV-related HCC. Single nucleotide polymorphism (SNP) rs114401688 is in linkage disequilibrium with a previously reported SNP rs9275319. In the current study, we found that its association with HCC could be explained by HLA-DQB1*04 and HLA-DRB1*04. SNP rs115126566 is a novel risk variant and may function by regulating transcriptions of HLA-DPA1/DPB1 through enhancer-mediated mechanisms. HLA zygosity analysis showed that homozygosity at HLA-DQB1 gene is suggestively associated with a higher risk of HCC (P = 0.10) and the risk was more pronounced in the older age group (age ≥50, P = 0.03). DISCUSSION: Our findings further the understanding of the genetic basis for HBV-related HCC predisposition in chronic HBV carriers.

6.
Aging (Albany NY) ; 132021 Jun 27.
Article in English | MEDLINE | ID: mdl-34175840

ABSTRACT

Non-small cell lung cancer (NSCLC) is a common malignancy with high mortality and poor prognosis. Levobupivacaine is a widely used local anesthetic and presents potential anti-tumor activity. Nevertheless, the function of levobupivacaine in the NSCLC development remains elusive. Here, we tried to investigate the impact of levobupivacaine on the NSCLC progression and the underlying mechanism. Significantly, we revealed that levobupivacaine could inhibit the proliferation and induce the apoptosis of NSCLC cells. Levobupivacaine was able to attenuate the invasion and migration in the cells. Meanwhile, the treatment of levobupivacaine enhanced the erastin-induced inhibition of cell growth of NSCLC cells. The treatment of levobupivacaine remarkably increased the levels of ROS, iron, and Fe2+ in NSCLC cells. Mechanically, levobupivacaine up-regulated the expression of p53 and induced ferroptosis by regulating p53 in NSCLC cells. Moreover, tumorigenicity analysis in nude mice showed that the treatment of levobupivacaine significantly repressed the tumor growth of NSCLC cells in vivo. In summary, we concluded that the local anesthetic levobupivacaine inhibits the progression and induces ferroptosis of NSCLC by up-regulating p53. Our finding provides new insights into the mechanism by which levobupivacaine attenuates the development of NSCLC. Levobupivacaine may serve as a potential anti-tumor candidate for the therapeutic strategy of NSCLC.

7.
Nanotechnology ; 32(48)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-33647887

ABSTRACT

Perovskite solar cells (PSCs) are important candidates for next-generation thin-film photovoltaic technology due to their superior performance in energy harvesting. At present, their photoelectric conversion efficiencies (PCEs) are comparable to those of silicon-based solar cells. PSCs usually have a multi-layer structure. Therefore, they face the problem that the energy levels between adjacent layers often mismatch each other. Meanwhile, large numbers of defects are often introduced due to the solution preparation procedures. Furthermore, the perovskite is prone to degradation under ultraviolet (UV) irradiation. These problems could degrade the efficiency and stability of PSCs. In order to solve these problems, quantum dots (QDs), a kind of low-dimensional semiconductor material, have been recently introduced into PSCs as charge transport materials, interfacial modification materials, dopants and luminescent down-shifting materials. By these strategies, the energy alignment and interfacial conditions are improved, the defects are efficiently passivated, and the instability of perovskite under UV irradiation is suppressed. So the device efficiency and stability are both improved. In this paper, we overview the recent progress of QDs' utilizations in PSCs.

8.
Br J Clin Pharmacol ; 87(3): 1347-1358, 2021 03.
Article in English | MEDLINE | ID: mdl-33464624

ABSTRACT

AIM: Exploring the need for optimization of drug exposure to improve tuberculosis (TB) treatment outcome is of great importance. We aimed to describe drug exposure at steady state as well as the population pharmacokinetics (PK) of rifampicin (RIF), isoniazid (INH) and pyrazinamide (PZA) in Chinese TB patients. METHODS: A prospective multicentre PK study of RIF, INH and PZA was conducted in China between January 2015 and December 2017. Six blood samples were collected from each subject for drug concentration measurement. Nonlinear mixed effect analyses were used to develop population PK models. RESULTS: In total, 217 patients were included. Positive correlations between body weight, clearance and volume of distribution were identified for RIF and PZA, whereas body weight only influenced clearance for INH. In addition, males had higher RIF clearance and thus lower RIF exposure than women. Acetylator status was significantly associated with INH clearance as INH exposure in intermediate and fast acetylators was significantly lower than in slow acetylators, especially in low-weight bands. Simulations also showed significantly lower drug exposures in low-weight bands for all three drugs. Patients weighing <38 kg were respectively exposed to 30.4%, 45.9% and 18.0% lower area under the concentration-time curve of RIF, INH and PZA than those weighing ≥70 kg. Higher doses by addition of one fixed-dose combination tablet or 150 mg INH were simulated and found to be effective in improving INH drug exposures, especially in low-weight bands. CONCLUSION: PK variability of first-line anti-TB drugs is common in Chinese TB patients. The developed population PK models can be used to optimize drug exposures in Chinese patients. Moreover, standard dosing needs to be adjusted to increase target attainment.


Subject(s)
Antitubercular Agents , Pharmaceutical Preparations , Antitubercular Agents/therapeutic use , China/epidemiology , Cohort Studies , Female , Humans , Isoniazid , Male , Prospective Studies
9.
Clin Infect Dis ; 73(9): e3520-e3528, 2021 11 02.
Article in English | MEDLINE | ID: mdl-33070176

ABSTRACT

BACKGROUND: Prospective studies correlating pharmacokinetic/pharmacodynamic (PK/PD) indices to clinical responses are urgently needed. This study aimed to find clinically relevant PK/PD thresholds that can be used for treatment optimization. METHODS: Pharmacokinetic sampling and minimum inhibitory concentration (MIC) measurements were performed for patients with culture-confirmed tuberculosis (TB). Classification and regression tree (CART) analysis was applied to obtain PK and/or PD thresholds for first-line drugs predictive of 2-week/month culture conversion, treatment outcome determined at 6-8 months, acute kidney injury (AKI), and drug-induced liver injury (DILI). Least absolute shrinkage and selection operator (LASSO) logistic regression was used for model development and validation. RESULTS: Finally, 168 and 52 patients with TB were included in development and validation cohorts for analysis, respectively. Area under the concentration-time curve (AUC)/MIC below CART-derived thresholds for pyrazinamide of 8.42, pyrazinamide of 2.79, or rifampicin of 435.45 were the predominant predictors of 2-week culture conversion, 2-month culture conversion, or treatment success, respectively. Isoniazid AUC >21.78 mg · h/L or rifampicin AUC >82.01 mg · h/L were predictive of DILI or AKI during TB treatment. The predictive performance of trained LASSO models in the validation cohort was evaluated by receiver operating characteristic curves and ranged from 0.625 to 0.978. CONCLUSIONS: PK/PD indices and drug exposure of TB drugs were associated with clinical outcome and adverse events. The effect of CART-derived thresholds for individualized dosing on treatment outcome should be studied in a randomized controlled trial.


Subject(s)
Pharmaceutical Preparations , Tuberculosis, Pulmonary , Tuberculosis , Antitubercular Agents/therapeutic use , Humans , Microbial Sensitivity Tests , Prospective Studies , Pyrazinamide/therapeutic use , Tuberculosis/drug therapy , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/drug therapy
10.
J Colloid Interface Sci ; 585: 614-626, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33131783

ABSTRACT

Hyperbranched molecules are a kind of promising materials due to their unique structures. In this work, two hyperbranched molecules (GON and GOH) are used as effective inhibitors for Al alloys in NaCl solution. Their inhibitive performances are evaluated by electrochemical measurements and surface characterization. The results indicate that inhibition performances of GON and GOH are closely related to the concentrations, influenced by the combination of steric hindrance and bonding effects. At relatively low concentrations (0.03-0.10 mM), GON displays a more pronounced ability to inhibit corrosion than GOH, owing to more anchoring functional groups. Oppositely, GOH has good inhibition performance at higher concentrations (0.50-1.00 mM). The interaction between the Al electrode and GOH results in the formation of a more condenser protective film than GON at high concentrations. In addition, the adsorption mechanism of two hyperbranched molecules is revealed by theoretical calculations.

11.
Liver Int ; 40(11): 2834-2847, 2020 11.
Article in English | MEDLINE | ID: mdl-32594568

ABSTRACT

BACKGROUND AND AIMS: Somatic mutation R249S in TP53 is highly common in hepatocellular carcinoma (HCC). We aim to investigate the effects of R249S in ctDNA on the prognosis of HCC. METHODS: We analysed three cohorts including 895 HCC patients. TP53 mutation spectrum was examined by direct sequencing of genomic DNA from tissue specimens in HCC patients with hepatectomy (Cohort 1, N = 260). R249S and other recurrent missense mutations were assessed for their biological functions and associations with overall survival (OS) and progression-free survival (PFS) of HCC patients in Cohort 1. R249S within circulating tumour DNA (ctDNA) was detected through droplet digital polymerase chain reaction (ddPCR) and its association with OS and PRS was analysed in HCC patients with (Cohort 2, N = 275) or without (Cohort 3, N = 360) hepatectomy. RESULTS: In Cohort 1, R249S occupied 60.28% of all TP53 mutations. Overexpression of R249S induced more serious malignant phenotypes than those of the other three identified TP53 recurrent missense mutations. Additionally, R249S, but not other missense mutations, was significantly associated with worse OS (P = .006) and PFS (P = .01) of HCC patients. Consistent with the results in Cohort 1, HCC patients in Cohorts 2 and 3 with R249S had worse OS (P = 8.291 × 10-7 and 2.608 × 10-7 in Cohorts 2 and 3, respectively) and PFS (P = 5.115 × 10-7 and 5.900 × 10-13 in Cohorts 2 and 3, respectively) compared to those without this mutation. CONCLUSIONS: TP53 R249S mutation in ctDNA may serve as a promising prognosis biomarker for HCC patients with or without hepatectomy.


Subject(s)
Carcinoma, Hepatocellular , Circulating Tumor DNA , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/surgery , Circulating Tumor DNA/genetics , Hepatectomy , Humans , Liver Neoplasms/genetics , Liver Neoplasms/surgery , Mutation , Prognosis , Tumor Suppressor Protein p53/genetics
12.
Mol Cell Biochem ; 465(1-2): 65-73, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31894530

ABSTRACT

Curcumin (Cur) is widely used as an anti-inflammation agent and has anti-depression potential. Neuroinflammation mediated by Ca2+ channel activation is closely associated with the progression of post-stroke depression (PSD). In the current study, the role of P2X7 receptor (P2X7R) in the anti-PSD function of Cur was explored. Rats were subjected to middle cerebral artery occlusion (MCAO) surgery and chronic mild stress administration to induce PSD symptoms and then treated with Cur. The behaviors of rats were assessed with sucrose preference and forced swim tests. The accumulation of Ca2+ and the systemic inflammatory response in rats were detected. To determine the role of P2X7R in the anti-PSD function of curcumin, the PSD mice were further administrated with P2X7R agonist and antagonist. The administration of Cur attenuated behavior disorders associated with PSD. Moreover, the Ca2+ accumulation and the inflammatory response associated with PSD were also blocked by Cur. Cur also inhibited the activation of Ca2+ channel. The induced activity of P2X7R blocked the function of Cur by maintaining the symptoms of PSD in Cur-treated rats. Collectively, the anti-PSD function of Cur was dependent on the inhibition of P2X7R, which then deactivated Ca2+ channel-mediated inflammatory response associated with PSD progression.


Subject(s)
Calcium Signaling/drug effects , Calcium/metabolism , Curcumin/pharmacology , Microglia/metabolism , Purinergic P2X Receptor Agonists/pharmacology , Receptors, Purinergic P2X7/metabolism , Animals , Depression/metabolism , Depression/pathology , Male , Microglia/pathology , Purinergic P2X Receptor Antagonists/pharmacology , Rats , Rats, Sprague-Dawley , Stroke/metabolism , Stroke/pathology
13.
J Nanosci Nanotechnol ; 20(3): 1749-1755, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31492339

ABSTRACT

A novel bilayer counter electrodes for Dye-sensitized Solar Cells (DSSCs) made of reduced graphene oxide (RGO) and aligned carbon nanotube (ACNT) was developed. The underlayer ACNT severs as a transition layer for RGO. The overlayer of RGO plays the role of catalytic layer. It was demonstrated that the property of graphene counter electrode was adversely affected by aggregation, by adding surfactant, the aggregation of graphene can be inhabited effectively. Moreover, the interface between the RGO and the ACNT can be optimized by surfactant functionalization of RGO. After screening, a cationic surfactant cetylpyridinium chloride (CPC) functionalized RGO, code as CPC-RGO, exhibits the best performance. Compare to the ACNT based counter electrode and other surfactant functionalized RGO/ACNT based bilayer counter electrodes, the CPC-RGO/ACNT reduced interface resistance and improved the double chemical capacitance efficiently, thus uplifting the short circuit current density and fill factor from 7.35 to 8.8 mA cm-2, and 59.87 to 62.79, respectively. Eventually, the CPC-RGO/ACNT based DSSC giving a power conversion efficiency of 3.9%, which is 1.24-fold than that of ANCT based DSSC, because of the best splay degree of CPC/RGO.

14.
Environ Sci Pollut Res Int ; 27(6): 5981-5992, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31863371

ABSTRACT

Senna alexandrina is traditionally used for its antioxidant and anti-inflammatory properties, but little information is available concerning its potential protective effects against cadmium, which is a widespread environmental toxicant that causes hepatotoxicity. Here, we explored the effects of S. alexandrina extract (SAE) on cadmium chloride (CdCl2)-induced liver toxicity over 4 weeks in rats. Rats were allocated into four groups: control, SAE (100 mg/kg), CdCl2 (0.6 mg/kg), and SAE + CdCl2, respectively. Cadmium level in hepatic tissue, blood transaminases, and total bilirubin as indicators of liver function were assessed. Oxidative stress indices [malondialdehyde (MDA), nitrate/nitrite (NO), and glutathione (GSH)], antioxidant molecules [superoxide dismutase (SOD, catalase (CAT), glutathione-derived enzymes, and nuclear factor erythroid 2-related factor 2 (Nrf2)], pro-inflammatory mediators [interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α)], apoptosis proteins (Bcl-2, Bax, and caspase-3), and histological alterations to the liver were examined. SAE administration before CdCl2 exposure decreased cadmium deposition in liver tissue and the blood liver function indicators. SAE pre-treatment prevented oxidative, inflammatory, and apoptotic reactions and decreased histological alterations to the liver caused by CdCl2 exposure. SAE can be used as a promising protective agent against CdCl2-induced hepatotoxicity by increasing Nrf2 expression. Graphical abstract.


Subject(s)
Cadmium Chloride/toxicity , Hazardous Substances/toxicity , Protective Agents/pharmacology , Senna Extract/pharmacology , Senna Plant , Animals , Antioxidants , Apoptosis , Cadmium , Dietary Supplements , Liver , Oxidative Stress , Rats , Sennosides , Superoxide Dismutase
15.
J Clin Pharm Ther ; 45(2): 354-364, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31778586

ABSTRACT

WHAT IS KNOWN AND OBJECTIVE: Myelosuppression, an adverse drug reaction (ADR), often causes medical treatment termination in cancer patients. It has been known that genetic components, such as single-nucleotide polymorphisms (SNPs), influence the risk of myelosuppression at the individual-patient level. However, due to ethnic variation in frequency of genetic polymorphisms, results reported in Caucasian patients may not be generalizable to the Chinese Han population. Until now, few researches on myelosuppression included Chinese Han patients. In this study, we conducted a systematic study of potential biomarkers for docetaxel-induced myelosuppression in Han Chinese patients. METHODS: We examined 61 SNPs in 36 genes that code for drug transporters, metabolism enzymes, nuclear receptors and DNA repair pathway in 110 Chinese Han patients receiving docetaxel-based chemotherapy. Genotyping was conducted using the Sequenom MassARRAY system. Significant SNPs were identified by logistic regression, and gene-gene interactions were investigated by generalized multifactor dimensionality reduction (GMDR) analysis. RESULTS AND DISCUSSION: Our results revealed that 11 SNPs in nine genes (SLC15A1, SLCO1A2, CYP2D6, FMO3, UGT1A1, NAT2, SULT2A1, PXR and HNF4α) were associated with docetaxel-induced myelosuppression. GMDR analyses suggested that a 3-locus model: SLC15A1 rs2297322-PXR rs3732359-FMO3 rs2266782 was an appropriate predictive model of docetaxel-induced myelosuppression (P = .017, Testing Bal.Acc = 0.653, CV Consistency = 10/10). WHAT IS NEW AND CONCLUSION: Our findings suggest multiple novel predictive biomarkers of docetaxel-induced myelosuppression: SLC15A1 rs2297322, PXR rs3732359 and FMO3 rs2266782. These discoveries should help in advancing future personalized therapy of docetaxel-based chemotherapy specific to Chinese Han patients.


Subject(s)
Antineoplastic Agents/adverse effects , Asian People/genetics , Docetaxel/adverse effects , Genetic Predisposition to Disease , Aged , Antineoplastic Agents/administration & dosage , Biomarkers/metabolism , Bone Marrow/drug effects , Bone Marrow/pathology , Docetaxel/administration & dosage , Female , Humans , Male , Middle Aged , Neoplasms/drug therapy , Polymorphism, Single Nucleotide
16.
Neurol Res ; 41(12): 1075-1082, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31591945

ABSTRACT

Objectives: To explore the role of mTOR signaling pathway in modulating epileptogenesis in an N-methyl-D-aspartic acid (NMDA)-induced infant spasm (IS) rat model. Methods: After inducing IS successfully, the phosphorylation status of PI3K, Akt, mTOR and S6K of brain and hippocampus tissues was assessed using western blot and immunochemistry analysis, respectively. The possible mechanism of mTOR signaling pathway was evaluated by the, inhibitors for mTOR and PI3K, rapamycin and wortmannin, respectively. The inhibitors were injected into the intraperitoneal space of the rats to examine the effects of PI3K and mTOR in IS rat model. Results: The phosphorylated levels of mTOR and PI3K in hippocampus increased significantly (P < 0.05) 7 days after IS induction in rats. After administration of wortmannin, the phosphorylated levels of PI3K and mTOR decreased. However, only the phosphorylated level of mTOR decreased obviously after rapamycin administration. No obvious neurogenesis was found after IS induction. Discussion: Results of the present study suggest that hippocampal PI3K may be another potential target for IS treatment.


Subject(s)
Hippocampus/enzymology , Phosphatidylinositol 3-Kinase/metabolism , Spasm/enzymology , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Death , Disease Models, Animal , Female , Hippocampus/drug effects , Hippocampus/pathology , N-Methylaspartate/administration & dosage , Phosphorylation , Protein Kinase Inhibitors/administration & dosage , Rats, Sprague-Dawley , Signal Transduction , Sirolimus/administration & dosage , Spasm/chemically induced , Spasm/pathology , Wortmannin/administration & dosage
17.
Zhongguo Dang Dai Er Ke Za Zhi ; 21(9): 845-850, 2019 Sep.
Article in Chinese | MEDLINE | ID: mdl-31506140

ABSTRACT

OBJECTIVE: To investigate the factors in first-time adrenocorticotropic hormone (ACTH) therapy and their influence on spasm control time in infants with infantile spasms. METHODS: A total of 72 infants with infantile spasms who were admitted from January 2008 to October 2013 were enrolled. Their clinical data were collected, and the exposure factors for infantile spasms were selected. A Cox proportional-hazards regression model analysis was performed for these factors to analyze their influence on spasm control time. RESULTS: Clarification of the etiology (known or unexplained etiology), frequency of spasms before treatment, and presence or absence of combination therapy (ACTH used alone or in combination with magnesium sulfate) had a significant influence on spasm control time in infants with infantile spasms. The infants with a known etiology had a significantly shorter spasm control time than those with unexplained etiology, and the infants with a low frequency of spasms before treatment and receiving ACTH combined with magnesium sulfate early had a significantly longer spasm control time than their counterparts (P<0.05). CONCLUSIONS: For infants with infantile spasms at initial diagnosis, etiology should be clarified, which may helpful for evaluating prognosis. A combination of ACTH and magnesium sulfate should be given as soon as possible, which may improve their prognosis.


Subject(s)
Adrenocorticotropic Hormone/therapeutic use , Spasms, Infantile , Anticonvulsants , Humans , Infant , Proportional Hazards Models , Spasm , Spasms, Infantile/drug therapy
18.
Biomed Pharmacother ; 117: 109171, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31261026

ABSTRACT

5-Fluorouracil (5-FU)-based chemotherapy has always been the first-line treatment of colorectal cancer (CRC). However, the occurrence of clinical 5-FU resistance is a major reason for CRC therapy failure. This study intended to explore the possible role of long non-coding RNA HOTAIRM1 (HOTAIRM1) in the pathogenesis of 5-FU resistant CRC and its underlying mechanism. Our data showed that HOTAIRM1 was downregulated in CRC tissues and cell lines (HCT116 and SW480), and even lower in 5-FU resistant CRC tissues and cell lines (HCT116/5-FU and SW480/5-FU). In vitro, effects of HOTAIRM1 dysregulation in 5-FU resistant CRC cells were investigated and its overexpression could reduce cell viability, invasion, migration, and multi-drug resistance as evidenced by MTT assay, Transwell assay, epithelial-mesenchymal transition (EMT), and western blot analyzing expression of drug-resistant genes MRP1 and MDR1, respectively. Mechanically, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) identified that HOTAIRM1 and B-cell translocation gene 3 (BTG3) were target genes of miR-17-5p. Moreover, miR-17-5p was upregulated and BTG3 was downregulated in HCT116/5-FU and SW480/5-FU cells. Silencing of miR-17-5p showed suppressive role on cell viability, invasion, migration, and multi-drug resistance in HCT116/5-FU and SW480/5-FU cells, which could be abolished by HOTAIRM1 knockdown. Similarly, ectopic expression of miR-17-5p reversed BTG3-mediated inhibition on cell viability, invasion, migration, and multi-drug resistance. In vivo, the tumorigenesis of HCT116/5-FU cells when highly expressed HOTAIRM1 by lentivirus infection was inhibited through downregulating miR-17-5p and upregulating BTG3. In conclusion, HOTAIRM1 might act as a tumor-suppressor in 5-FU resistant CRC cells in vitro and in vivo through downregulating miR-17-5p/BTG3 pathway and inhibiting multi-drug resistance.


Subject(s)
Cell Cycle Proteins/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Disease Progression , Drug Resistance, Neoplasm/drug effects , Fluorouracil/pharmacology , MicroRNAs/metabolism , Animals , Base Sequence , Carcinogenesis/drug effects , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Cycle Proteins/genetics , Cell Line, Tumor , Down-Regulation/drug effects , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice, Nude , MicroRNAs/genetics , Up-Regulation/drug effects
19.
Cell Death Dis ; 10(5): 333, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988277

ABSTRACT

microRNAs (miRNAs) play essential roles in progression of hepatocellular carcinoma (HCC). However, the roles of miR-196a and miR-196b as well as mechanism in HCC progression remain poorly understood. The expressions of miR-196a, miR-196b and suppressor of cytokine signaling 2 (SOCS2) were measured in HCC tissues and cells by quantitative real-time polymerase chain reaction or immunohistochemistry. HCC progression was investigated by cell proliferation, glycolysis, cycle, clones, apoptosis, and necrosis. The interaction between SOCS2 and miR-196a or miR-196b was explored by luciferase activity and RNA immunoprecipitation analyses. The expressions of proteins in Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway were measured by western blot. A xenograft model was established to investigate the roles of miR-196a or miR-196b in vivo. We found that miR-196a and miR-196b were highly expressed in HCC tissues and cells. High expression of miR-196a or miR-196b was correlated with tumor size, tumor-node-metastasis stage, lymph node metastasis, albumin-bilirubin grade and poor 5-year survival. Knockdown of miR-196a or miR-196b suppressed cell proliferation, glycolysis, cell cycle process, colony formation but induced apoptosis or necrosis in HCC cells. SOCS2 was targeted by miR-196a and miR-196b and its interference ablated abrogation of miR-196a or miR-196b-mediated inhibitory effect on HCC progression. SOCS2 was negatively associated with activation of the JAK/STAT pathway. Besides, knockdown of miR-196a or miR-196b limited xenograft tumor growth by blocking the JAK/STAT pathway. We concluded that downregulation of miR-196a or miR-196b inhibited HCC progression through regulating the JAK/STAT pathway via targeting SOCS2, providing novel targets for prognosis and therapeutics of HCC.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , MicroRNAs/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism , Animals , Antagomirs/metabolism , Apoptosis , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/mortality , Cell Line, Tumor , Female , Humans , Janus Kinases/metabolism , Kaplan-Meier Estimate , Liver Neoplasms/metabolism , Liver Neoplasms/mortality , Male , Mice , Mice, Nude , MicroRNAs/genetics , Middle Aged , RNA Interference , RNA, Small Interfering/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Suppressor of Cytokine Signaling Proteins/antagonists & inhibitors , Suppressor of Cytokine Signaling Proteins/genetics
20.
J Exp Clin Cancer Res ; 38(1): 62, 2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30736829

ABSTRACT

OBJECTIVE: To investigate the lung cancer-promoting mechanism of mesenchymal stem cell-secreted extracellular vesicles (MSC-EV). METHODS: EV were isolated from culture media of human bone marrow-derived MSCs that were pre-challenged with or without hypoxia (referred to as H-EV and N-EV, respectively). After treatment with N-EV or H-EV, A549 and H23 cell proliferation, apoptosis, trans-well invasion and epithelial-to-mesenchymal transition (EMT) were examined. Polarization of human primary monocytes-derived macrophages with or without N-EV or H-EV induction were analyzed by flow cytometry and ELISA. PTEN, PDCD4 or RECK gene was overexpressed in A549 cells, while miR-21-5p was knocked down in MSCs, A549 or H23 lung cancer cells or primary monocytes by miR-21-5p inhibitor transfection. Protein level of PTEN, PDCD4, RECK, AKT or STAT3 as well as phosphorylation level of AKT or STAT3 protein were assayed by western blot. Tumorigenicity of A549 and H23 cells with or without MSC-EV co-injection was assayed on immunocompromised mice. The xenograft tumor were examined for cell proliferation, angiogenesis, apoptosis and intra-tumoral M1/M2 macrophage polarization. RESULTS: Comparing to N-EV, H-EV treatment significantly increased A549 and H23 cell proliferation, survival, invasiveness and EMT as well as macrophage M2 polarization. MiR-21-5p knocked down significantly abrogated the cancer-promoting and macrophage M2 polarizing effects of H-EV treatment. H-EV treatment downregulated PTEN, PDCD4 and RECK gene expression largely through miR-21-5p. Overexpressing PTEN, PDCD4 and RECK in A549 cells significantly reduced the miR-21-5p-mediated anti-apoptotic and pro-metastatic effect of H-EV, while overexpressing PTEN in monocytes significantly reduced macrophage M2 polarization after induction with the presence of H-EV. H-EV co-injection significantly increased tumor growth, cancer cell proliferation, intra-tumoral angiogenesis and M2 polarization of macrophages in vivo partially through miR-21-5p. CONCLUSIONS: Increased miR-21-5p delivery by MSC-EV after hypoxia pre-challenge can promote lung cancer development by reducing apoptosis and promoting macrophage M2 polarization.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Extracellular Vesicles/metabolism , Lung Neoplasms/genetics , Macrophages/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Hypoxia , Cell Proliferation , Humans , Lung Neoplasms/pathology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...