Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37107491

ABSTRACT

Wheat gluten (WG) and peanut protein powder (PPP) mixtures were extruded at high moisture to investigate the potential application of this mixture in meat analog production. Multiple factors, including the water absorption index (WAI), water solubility index (WSI), rheological properties of the mixed raw materials, die pressure, torque and specific mechanical energy (SME) during high moisture extrusion, texture properties, color, water distribution, and water activity of extrudates were analyzed to determine the relationships among the raw material characteristics, extruder response parameters, and extrudate quality. At a WG ratio of 50%, the extrudates have the lowest hardness (2.76 kg), the highest springiness (0.95), and a fibrous degree of up to 1.75. The addition of WG caused a significant rightward shift in the relaxation time of hydrogen protons in the extrudates, representing increased water mobility and water activity. A ratio of 50:50 gave the smallest total color difference (ΔE) (about 18.12). When the added amount of WG was 50% or less, it improved the lightness and reduced the ΔE compared to >50% WG. Therefore, clarifying the relationship among raw material characteristics, extruder response parameters, and extruded product quality is helpful in the systematic understanding and regulation of the fiber textural process of binary protein meat analogs.

2.
Nanotechnology ; 33(9)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34808610

ABSTRACT

Oxygen vacancies are considered to be an important factor to influence the electronic structure and charge transport of electrocatalysts in the field of energy chemistry. Various strategies focused on oxygen vacancy engineering are proved to be efficient for further improving the electrocatalytic performance of Co3O4. Herein, an optimal Co3O4with rich oxygen vacancies have been synthesized via a two-step process combining solution reduction and Ni2+impregnation. The as-prepared electrocatalyst exhibits an enhanced oxygen evolution performance with the overpotential of 330 mV at the current density of 10 mA cm-2in alkaline condition, which is 84 mV lower than that of pristine one. With the increasing of oxygen vacancies, the charge transfer efficiency and surface active area are relatively enhanced reflected by the Tafel slope and double-layer capacitance measurement. These results indicate that combination of solution reduction and heteroatom doping can be a valid way for efficient metal oxides-based electrocatalyst development by constructing higher concentration of oxygen vacancy.

3.
Chem Commun (Camb) ; 56(17): 2602-2605, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32016238

ABSTRACT

Herein, we successfully regulated phosphorus vacancies in Co0.68Fe0.32P through Ar-plasma treatment. The Ar-plasma treated Co0.68Fe0.32P exhibits a delicate surface state where the surface Co and Fe ions show an unusual electron loss. The unique surface state enhances the oxygen evolving performance of the phosphide.

4.
Chempluschem ; 83(8): 812-818, 2018 Aug.
Article in English | MEDLINE | ID: mdl-31950663

ABSTRACT

High Bi-ratio ternary sulfides have been recently reported as superior thermoelectric materials. However, the synthesis of high Bi-ratio Cu-Bi-S nanocrystal remains a challenge. Reported here are the synthesis and characterization of three-phase Cu-Bi-S nanocrystals with the nominal chemical formulae of Cu1.57 Bi4.57 S8 , Cu2.93 Bi4.89 S9 and Cu3 BiS3 . The samples were prepared using a Bi2 S3 precursor by varying the amount and type of Cu2-x S (i. e. Cu2 S or Cu7.2 S4 ) reactants. TEM images reveal that two new samples crystalized having nanorod morphology with radii of approximately 50 nm and lengths of 200 nm. XPS results indicate that the valence states of Bi in both the two new phases are +3 with viable oxidation states for Cu. UV-Vis-NIR absorption spectroscopy reveals that narrow direct bandgaps are 1.12 and 1.27 eV for Cu1.57 Bi4.57 S8 and Cu2.93 Bi4.89 S9 , respectively. Besides, this method could also be applied to synthesize the Cu3 BiS3 phase with a new nanoplate morphology. The as-synthesized Cu-Bi-S samples show Cu/Bi ratio-dependent photoresponsive properties. This study not only reports the structure and bandgap of two ternary sulfides, which have only been discovered in the mineral previously, but also provides an efficient method for synthesizing Bi-rich ternary chalcogenide nanocrystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...