Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Se Pu ; 42(5): 410-419, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736384

ABSTRACT

Protein A affinity chromatographic materials are widely used in clinical medicine and biomedicine because of their specific interactions with immunoglobulin G (IgG). Both the characteristics of the matrix, such as its structure and morphology, and the surface modification method contribute to the affinity properties of the packing materials. The specific, orderly, and oriented immobilization of protein A can reduce its steric hindrance with the matrix and preserve its bioactive sites. In this study, four types of affinity chromatographic materials were obtained using agarose and polyglycidyl methacrylate (PGMA) spheres as substrates, and multifunctional epoxy and maleimide groups were used to fix protein A. The effects of the ethylenediamine concentration, reaction pH, buffer concentration, and other conditions on the coupling efficiency of protein A and adsorption performance of IgG were evaluated. Multifunctional epoxy materials were prepared by converting part of the epoxy groups of the agarose and PGMA matrices into amino groups using 0.2 and 1.6 mol/L ethylenediamine, respectively. Protein A was coupled to the multifunctional epoxy materials using 5 mmol/L borate buffer (pH 8) as the reaction solution. When protein A was immobilized on the substrates by maleimide groups, the agarose and PGMA substrates were activated with 25% (v/v) ethylenediamine for 16 h to convert all epoxy groups into amino groups. The maleimide materials were then converted into amino-modified materials by adding 3 mg/mL 3-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) dissolved in dimethyl sulfoxide (DMSO) and then suspended in 5 mmol/L borate buffer (pH 8). The maleimide groups reacted specifically with the C-terminal of the sulfhydryl group of recombinant protein A to achieve highly selective fixation on both the agarose and PGMA substrates. The adsorption performance of the affinity materials for IgG was improved by optimizing the bonding conditions of protein A, such as the matrix type, matrix particle size, and protein A content, and the adsorption properties of each affinity material for IgG were determined. The column pressure of the protein A affinity materials prepared using agarose or PGMA as the matrix via the maleimide method was subsequently evaluated at different flow rates. The affinity materials prepared with PGMA as the matrix exhibited superior mechanical strength compared with the materials prepared with agarose. Moreover, an excellent linear relationship between the flow rate and column pressure of 80 mL/min was observed for this affinity material. Subsequently, the effect of the particle size of the PGMA matrix on the binding capacity of IgG was investigated. Under the same protein A content, the dynamic binding capacity of the affinity materials on the PGMA matrix was higher when the particle size was 44-88 µm than when other particle sizes were used. The properties of the affinity materials prepared using the multifunctional epoxy and maleimide-modified materials were compared by synthesizing affinity materials with different protein A coupling amounts of 1, 2, 4, 6, 8, and 10 mg/mL. The dynamic and static binding capacities of each material for bovine IgG were then determined. The prepared affinity material was packed into a chromatographic column to purify IgG from bovine colostrum. Although all materials showed specific adsorption selectivity for IgG, the affinity material prepared by immobilizing protein A on the PGMA matrix with maleimide showed significantly better performance and achieved a higher dynamic binding capacity at a lower protein grafting amount. When the protein grafting amount was 15.71 mg/mL, the dynamic binding capacity of bovine IgG was 32.23 mg/mL, and the dynamic binding capacity of human IgG reached 54.41 mg/mL. After 160 cycles of alkali treatment, the dynamic binding capacity of the material reached 94.6% of the initial value, indicating its good stability. The developed method is appropriate for the production of protein A affinity chromatographic materials and shows great potential in the fields of protein immobilization and immunoadsorption material synthesis.


Subject(s)
Chromatography, Affinity , Staphylococcal Protein A , Chromatography, Affinity/methods , Staphylococcal Protein A/chemistry , Adsorption , Immunoglobulin G/chemistry , Polymethacrylic Acids/chemistry , Sepharose/chemistry
2.
J Cosmet Dermatol ; 23(7): 2478-2489, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38581133

ABSTRACT

BACKGROUND: Skin 16S microbiome diversity analysis indicates that the Staphylococcus genus, especially Staphylococcus aureus (S. aureus), plays a crucial role in the inflammatory lesions of acne. However, current animal models for acne do not fully replicate human diseases, especially pustular acne, which limits the development of anti-acne medications. AIMS: The aim is to develop a mouse model for acne, establishing an animal model that more closely mimics the clinical presentation of pustular acne. This will provide a new research platform for screening anti-acne drugs and evaluating the efficacy of clinical anti-acne experimental treatments. METHODS: Building upon the existing combination of acne-associated Cutibacterium acnes (C. acnes) with artificial sebum, we will inject a mixture of S. aureus and C. acnes locally into the dermis in a 3:7 ratio. RESULTS: We found that the acne animal model with mixed bacterial infection better replicates the dynamic evolution process of human pustular acne. Compared to the infection with C. acnes alone, mixed bacterial infection resulted in pustules with a distinct yellowish appearance, resembling pustular acne morphology. The lesions exhibited redness, vascular dilation, and noticeable congestion, along with evident infiltration of inflammatory cells. This induced higher levels of inflammation, as indicated by a significant increase in the secretion of inflammatory factors such as IL-1ß and TNF-α. CONCLUSION: This model can reflect the clinical symptoms and development of human pustular acne, overcoming the limitations of animal models commonly used in basic research to study this situation. It provides support for foundational research and the development of new acne medications.


Subject(s)
Acne Vulgaris , Disease Models, Animal , Acne Vulgaris/microbiology , Acne Vulgaris/pathology , Animals , Mice , Injections, Intradermal , Staphylococcus aureus/isolation & purification , Propionibacterium acnes/isolation & purification , Humans , Skin/microbiology , Skin/pathology , Propionibacteriaceae/isolation & purification
3.
Aging (Albany NY) ; 16(8): 7174-7187, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38669103

ABSTRACT

Glioma is the most frequently diagnosed primary brain tumor and typically has a poor prognosis because of malignant proliferation and invasion. It is urgent to elucidate the mechanisms driving glioma tumorigenesis and develop novel treatments to address this deadly disease. Here, we first revealed that PDZK1 is expressed at high levels in gliomas. Promoter hypomethylation may cause high expression of PDZK1 in glioma. Knockdown of PDZK1 inhibits glioma cell proliferation and invasion in vitro. Mechanistically, further investigations revealed that the loss of PDZK1 expression by siRNA inhibited the activation of the AKT/mTOR signaling pathway, leading to cell cycle arrest and apoptosis. Clinically, high expression of PDZK1 predicts a poorer prognosis for glioma patients than low expression of PDZK1. Overall, our study revealed that PDZK1 acts as a novel oncogene in glioma by binding to AKT1 and maintaining the activation of the AKT/mTOR signaling pathway. Thus, PDZK1 may be a potential therapeutic target for glioma.


Subject(s)
Brain Neoplasms , DNA Methylation , Glioma , Membrane Proteins , Promoter Regions, Genetic , Proto-Oncogene Proteins c-akt , Humans , Male , Apoptosis/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics
4.
Vet Microbiol ; 293: 110099, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677125

ABSTRACT

Japanese encephalitis virus (JEV) is a pathogen with a substantial impact on both livestock and human health. However, the critical host factors in the virus life cycle remain poorly understood. Using a library comprising 123411 small guide RNAs (sgRNAs) targeting 19050 human genes, we conducted a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based screen to identify essential genes for JEV replication. By employing knockout or knockdown techniques on genes, we identified eleven human genes crucial for JEV replication, such as prolactin releasing hormone receptor (PRLHR), activating signal cointegrator 1 complex subunit 3 (ASCC3), acyl-CoA synthetase long chain family member 3 (ACSL3), and others. Notably, we found that PRLHR knockdown blocked the autophagic flux, thereby inhibiting JEV infection. Taken together, these findings provide effective data for studying important host factors of JEV replication and scientific data for selecting antiviral drug targets.


Subject(s)
CRISPR-Cas Systems , Encephalitis Virus, Japanese , RNA, Guide, CRISPR-Cas Systems , Virus Replication , Virus Replication/genetics , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/physiology , Humans , RNA, Guide, CRISPR-Cas Systems/genetics , Gene Library , Animals , Host-Pathogen Interactions/genetics , Encephalitis, Japanese/virology , Cell Line , HEK293 Cells , Clustered Regularly Interspaced Short Palindromic Repeats
5.
Cell Mol Biol Lett ; 29(1): 40, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38528461

ABSTRACT

Ferroptosis, a therapeutic strategy for tumours, is a regulated cell death characterised by the increased accumulation of iron-dependent lipid peroxides (LPO). Tumour-associated long non-coding RNAs (lncRNAs), when combined with traditional anti-cancer medicines or radiotherapy, can improve efficacy and decrease mortality in cancer. Investigating the role of ferroptosis-related lncRNAs may help strategise new therapeutic options for breast cancer (BC). Herein, we briefly discuss the genes and pathways of ferroptosis involved in iron and reactive oxygen species (ROS) metabolism, including the XC-/GSH/GPX4 system, ACSL4/LPCAT3/15-LOX and FSP1/CoQ10/NAD(P)H pathways, and investigate the correlation between ferroptosis and LncRNA in BC to determine possible biomarkers related to ferroptosis.


Subject(s)
Ferroptosis , Neoplasms , RNA, Long Noncoding , Ferroptosis/genetics , RNA, Long Noncoding/genetics , Iron , Lipid Peroxides , Reactive Oxygen Species
6.
Microbiol Spectr ; 12(4): e0272623, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38415603

ABSTRACT

Antibiotic resistance is a recognized and concerning public health issue. Gram-negative bacilli, such as Pseudomonas aeruginosa (P. aeruginosa), are notorious for their rapid development of drug resistance, leading to treatment failures. TanReQing injection (TRQ) was chosen to explore its pharmacological mechanisms against clinical multidrug-resistant P. aeruginosa (MDR-PA), given its antibacterial and anti-inflammatory properties. We revealed the expression of proteins and genes in P. aeruginosa after co-culture with TRQ. This study developed an assessment method to evaluate clinical resistance of P. aeruginosa using MALDI-TOF MS identification and Biotyper database searching techniques. Additionally, it combined MIC determination to investigate changes in MDR-PA treated by TRQ. TRQ effectively reduced the MICs of ceftazidime and cefoperazone and enhanced the confidence scores of MDR-PA as identified by mass spectrometry. Using this evaluation method, the fingerprints of standard P. aeruginosa and MDR-PA were compared, and the characteristic peptide sequence (Seq-PA No. 1) associated with flagellum was found. The phenotypic experiments were conducted to confirm the effect of TRQ on the motility and adhesion of P. aeruginosa. A combination of co-immunoprecipitation and proteome analysis was employed, and 16 proteins were significantly differentially expressed and identified as potential candidates for investigating the mechanism of inhibiting resistance in P. aeruginosa treated by TRQ. The candidates were verified by quantitative real-time PCR analysis, and TRQ may affect these core proteins (MexA, MexB, OprM, OprF, OTCase, IDH, and ASL) that influence resistance of P. aeruginosa. The combination of multiple methods helps elucidate the synergistic mechanism of TRQ in overcoming resistance of P. aeruginosa.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen closely associated with various life-threatening acute and chronic infections. The presence of antimicrobial resistance and multidrug resistance in P. aeruginosa infections significantly complicates antibiotic treatment. The expression of ß-lactamase, efflux systems such as MexAB-OprM, and outer membrane permeability are considered to have the greatest impact on the sensitivity of P. aeruginosa. The study used a method to assess the clinical resistance of P. aeruginosa using matrix-assisted laser desorption ionization time of flight mass spectrometry identification and Biotyper database search techniques. TanReQing injection (TRQ) effectively reduced the MICs of ceftazidime and cefoperazone in multidrug-resistant P. aeruginosa (MDR-PA) and improved the confidence scores for co-cultured MDR-PA. The study found a characteristic peptide sequence for distinguishing whether P. aeruginosa is resistant. Through co-immunoprecipitation and proteome analysis, we explored the mechanism of TRQ overcoming resistance of P. aeruginosa.


Subject(s)
Drugs, Chinese Herbal , Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Ceftazidime/pharmacology , Cefoperazone/metabolism , Cefoperazone/pharmacology , Cefoperazone/therapeutic use , Proteome/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/metabolism , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Peptides/pharmacology
7.
Small ; 20(8): e2305765, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37821399

ABSTRACT

Solid proton electrolytes play a crucial role in various electrochemical energy storage and conversion devices. However, the development of fast proton conducting solid proton electrolytes at ambient conditions remains a significant challenge. In this study, a novel acidified nitrogen self-doped porous carbon material is presented that demonstrates exceptional superprotonic conduction for applications in solid-state proton battery. The material, designated as MSA@ZIF-8-C, is synthesized through the acidification of nitrogen-doped porous carbon, specifically by integrating methanesulfonic acid (MSA) into zeolitic imidazolate framework-derived nitrogen self-doped porous carbons (ZIF-8-C). This study reveals that MSA@ZIF-8-C achieves a record-high proton conductivity beyond 10-2  S cm-1 at ambient condition, along with good long-term stability, positioning it as a cutting-edge alternative solid proton electrolyte to the default aqueous H2 SO4 electrolyte in proton batteries.

8.
Eur J Med Chem ; 260: 115728, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37625288

ABSTRACT

The mitochondria have been identified as key targets in nonalcoholic fatty liver disease (NAFLD), one of the most prevalent chronic liver damage diseases globally. Meanwhile, the biological information analysis in this study revealed that SIRT1, PPARG, PPARA, and PPARGC1A (mitochondrial biogenesis-related proteins) were NAFLD therapeutic targets. Therefore, the design and synthesis of targeted drugs that promote mitochondrial biogenesis and improve mitochondrial function are particularly important for NAFLD treatment. Recently, we introduced butyls, hydroxyls, and halogens to benzophenone and synthesized a series of NAFLD-related 4-butylpolyhydroxybenzophenone compounds, aiming at investigating the hepatoprotective activity from the aspect of mitochondrial biogenesis. The structure-activity relationship demonstrated that hydroxyl and ketone groups were active groups interacting with mitochondrial biogenesis proteins (SIRT1 and PGC1α), and the activity was stronger when the o-hydroxyl group was present on the benzene ring. In contrast, the activity was little affected by the presence of the p-hydroxyl group, m-hydroxyl group, butyl group type, or halogen. In addition, in vitro studies confirmed that these compounds could directly bind to SIRT1 and PGC1α, markedly promote their interaction, significantly increase the expression of proteins and genes related to mitochondrial biogenesis (SIRT1, PGC1α, NRF1, TFAM, COX1, and ND6) and subsequently ameliorate mitochondria dysfunction, which was evidenced by the decreased ROS, upregulated ATP production, increased MMP, and enhanced mitochondrial number. According to the outcomes of our in vitro and in vivo experiments, 4-butyl-polyhydroxybenzophenone compounds could also effectively reduce the formation of lipid droplets and liver injury index (ALT, AST, LDH, AKP, γ-GT, and GDH) and improve the level of antioxidant enzymes (GSH and SOD). Particularly, the treatment of these compounds after a high-fat diet could significantly reduce body weight, decrease liver coefficient, attenuate liver damage, and ameliorate lipid accumulation in rat liver, demonstrating their therapeutic effects on NAFLD. Mechanistically, 4-butyl-polyhydroxybenzophenone compounds promoted mitochondrial biogenesis and eventually prevented NAFLD liver injury by activating the PGC1α signaling pathway in a SIRT1-dependent manner, which was strongly supported by SIRT1 inhibitor EX527.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Rats , Halogens , Non-alcoholic Fatty Liver Disease/drug therapy , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Sirtuin 1
9.
Exp Dermatol ; 32(9): 1350-1360, 2023 09.
Article in English | MEDLINE | ID: mdl-37183301

ABSTRACT

Acne vulgaris is a disorder of the pilosebaceous unit that is primarily caused by hyperseborrhoea, colonization with Propionibacterium acnes, hyperkeratosis and an inflammatory response. Existing pharmacodynamic assessment methods primarily focus on a single causative factor at a certain time point, making it difficult to assess multiple factors simultaneously in real time. Therefore, it is crucial to establish a dynamic and nondestructive method for the assessment of acne in vivo. This study utilized four-dimensional optical imaging techniques to assess the pathogenic factors and pathological progression of acne. LSCI was employed to measure blood flow; TPEF was used to observe inflammatory changes (NAD(P)H) in epidermal granular layer cells and structural changes in collagen fibres in the dermal layer. Additionally, the dermatoscope was used to investigate the micro-characterization of the lesions. We observed that the epidermis in the lesion area was thickened, hair follicles were keratinized, and there was obvious inflammation and blood flow aggregation by optical imaging technology. Based on these findings, the pathological progression of this acne model could be divided into the inflammation phase, accompanied by bacterial colonization, and the reparative phase. These results provide a new perspective for the assessment of acne and offer an experimental basis for the selection of precise drugs for clinical use.


Subject(s)
Acne Vulgaris , Animals , Mice , Acne Vulgaris/microbiology , Skin/pathology , Epidermis/pathology , Hair Follicle/pathology , Propionibacterium acnes , Inflammation/diagnostic imaging
10.
Environ Res ; 231(Pt 3): 116244, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37245567

ABSTRACT

The production and use of organophosphate esters (OPEs) as substitutes for traditional halogenated flame retardants is increasing, resulting in greater global concern related to their ecological risks to marine environments. In this study, polychlorinated biphenyls (PCBs) and OPEs, representing traditional halogenated and emerging flame retardants, respectively, were studied in multiple environmental matrices in the Beibu Gulf, a typical semi-closed bay in the South China Sea. We investigated the differences in PCB and OPE distributions, sources, risks, and bioremediation potentials. Overall, the concentrations of emerging OPEs were much higher than those of PCBs in both seawater and sediment samples. Sediment samples from the inner bay and bay mouth areas (L sites) accumulated more PCBs, with penta- and hexa-CBs as major homologs. Chlorinated OPEs were prevalent in both seawater and sediment samples from the L sites, whereas tri-phenyl phosphate (TPHP) and tri-n-butyl phosphate (TNBP) were predominant at the outer bay (B sites) sediment samples. Source identification via principal component analysis, land use regression statistics, and δ13C analysis indicate that PCBs were mainly sourced from the atmospheric deposition of sugarcane and waste incineration, whereas sewage inputs, aquaculture, and shipping activity were identified as sources of OPE pollution in the Beibu Gulf. A half-year sediment anaerobic culturing experiment was performed for PCBs and OPEs, and the results only exhibited satisfactory dechlorination for PCBs. However, compared with the low ecological risks of PCBs to marine organisms, OPEs (particularly trichloroethyl phosphate (TCEP) and TPHP) exhibited low to medium threats to algae and crustaceans at most sites. Given their increasing usage, high ecological risks, and low bioremediation potential in enrichment cultures, pollution by emerging OPEs warrants close attention.


Subject(s)
Flame Retardants , Polychlorinated Biphenyls , Water Pollutants, Chemical , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Flame Retardants/analysis , Biodegradation, Environmental , Organophosphates/analysis , Phosphates/analysis , China , Esters/analysis
11.
Dis Markers ; 2023: 6465182, 2023.
Article in English | MEDLINE | ID: mdl-37091891

ABSTRACT

Background: Cystatin C (Cys C) not only regulates the body's immune defenses but also contributes to tissue degradation and destruction by causing an imbalance between protease and antiprotease in infectious diseases. Is Cys C involved in pulmonary tuberculosis (PTB) infection and cavitation? We therefore conducted a retrospective study on this question to provide a basis for further studies. Methods: Cavitary PTB patients, noncavitary PTB patients, and healthy controls were recruited in our study. Serum Cys C, CRP, BUN, UA, and CR were measured in all subjects, and the Kruskal-Wallis test was used to compare medians of these clinical parameters in different groups. The Spearman rank correlation test was used to determine correlations between variables. In addition, a multivariate analysis using binary logistic regression was used to identify factors associated with PTB cavitation. Results: In our study, elevated serum Cys C levels were found in cavitary PTB patients compared to healthy controls and noncavitary patients (p = 0.022). Serum Cys C levels were statistically correlated with serum BUN and CR concentrations (r = 0.278, p = 0.005; r = 0.281, p = 0.004) in PTB patients. The binary logistic regression analysis showed that elevated serum Cys C levels were correlated with pulmonary cavitation in PTB patients (OR = 1.426, 95% CI: 1.071-1.898). Conclusion: Elevated serum levels of Cys C are associated with pulmonary cavitation in PTB patients.


Subject(s)
Cystatin C , Tuberculosis, Pulmonary , Humans , Retrospective Studies
12.
Talanta ; 259: 124506, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37027934

ABSTRACT

In this work, we used a simple ultrasonic stripping method to synthesize a bimetal MOFs at room temperature as a nanoenzyme with peroxidase-like (POD-like) activity. Through bimetal MOFs catalytic Fenton-like competitive reaction, thiamphenicol can be quantitatively dual-mode detected by fluorescence and colorimetry. It realized the sensitive detection of thiamphenicol in water, and the limits of detection (LOD) were 0.030 nM and 0.031 nM, and the liner ranges were 0.1-150 nM and 0.1-100 nM, respectively. The methods were applied to river water, lake water and tap water samples, and with satisfactory recoveries between 97.67% and 105.54%.


Subject(s)
Thiamphenicol , Peroxidases , Peroxidase , Water , Colorimetry , Catalysis
13.
Neural Plast ; 2023: 9303419, 2023.
Article in English | MEDLINE | ID: mdl-36910013

ABSTRACT

Referred somatic pain triggered by hyperalgesia is common in patients with inflammatory bowel disease (IBD). It was reported that sprouting of sympathetic nerve fibers into the dorsal root ganglion (DGR) and neurogenic inflammation were related to neuropathic pain, the excitability of neurons, and afferents. The purpose of the study was to explore the potential and mechanism of electroacupuncture (EA) at Zusanli (ST36) for the intervention of colon inflammation and hyperalgesia. Sprague-Dawley (SD) was randomly divided into four groups, including control, model, EA, and sham-EA. Our results showed EA treatment significantly attenuated dextran sulfate sodium- (DSS-) induced colorectal lesions and inflammatory cytokine secretion, such as TNF-α, IL-1ß, PGE2, and IL-6. EA also inhibited mechanical and thermal pain hypersensitivities of colitis rats. Importantly, EA effectively abrogated the promotion effect of DSS on ipsilateral lumbar 6 (L6) DRG sympathetic-sensory coupling, manifested as the sprouting of tyrosine hydroxylase- (TH-) positive sympathetic fibers into sensory neurons and colocalization of and calcitonin gene-related peptide (CGRP). Furthermore, EA at Zusanli (ST36) activated neurogenic inflammation, characterized by decreased expression of substance P (SP), hyaluronic acid (HA), bradykinin (BK), and prostacyclin (PGI2) in colitis rat skin tissues corresponding to the L6 DRG. Mechanically, EA treatment reduced the activation of the TRPV1/CGRP, ERK, and TLR4 signaling pathways in L6 DRG of colitis rats. Taken together, we presumed that EA treatment improved colon inflammation and hyperalgesia, potentially by suppressing the sprouting of sympathetic nerve fibers into the L6 DGR and neurogenic inflammation via deactivating the TRPV1/CGRP, ERK, and TLR4 signaling pathways.


Subject(s)
Colitis , Electroacupuncture , Neuralgia , Nociceptive Pain , Rats , Animals , Rats, Sprague-Dawley , Hyperalgesia/metabolism , Electroacupuncture/methods , Ganglia, Spinal/metabolism , Calcitonin Gene-Related Peptide/metabolism , Neurogenic Inflammation/metabolism , Toll-Like Receptor 4/metabolism , Neuralgia/metabolism , Nociceptive Pain/metabolism
14.
Se Pu ; 41(3): 265-273, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-36861210

ABSTRACT

An improved solid phase extraction (SPE)-high performance liquid chromatography method was established to determine 15 carbonyl compounds, namely, formaldehyde (FOR), acetaldehyde (ACETA), acrolein (ACR), acetone (ACETO), propionaldehyde (PRO), crotonaldehyde (CRO), butyraldehyde (BUT), benzaldehyde (BEN), isovaleraldehyde (ISO), n-valeraldehyde (VAL), o-methylbenzaldehyde (o-TOL), m-methylbenzaldehyde (m-TOL), p-methylbenzaldehyde (p-TOL), n-hexanal (HEX), and 2,5-dimethylbenzaldehyde (DIM), in soil. The soil was ultrasonically extracted with acetonitrile, and the extracted samples were derivatized with 2,4-dinitrophenylhydrazine (2,4-DNPH) to generate stable hydrazone compounds. The derivatized solutions were cleaned using an SPE cartridge (Welchrom® BRP) packed with N-vinylpyrrolidone/divinylbenzene copolymer. Separation was performed on an Ultimate® XB-C18 column (250 mm×4.6 mm, 5 µm), isocratic elution was performed with acetonitrile-water (65∶35, v/v) as the mobile phase, and detection was performed at a wavelength of 360 nm. The 15 carbonyl compounds in the soil were then quantified using an external standard method. The proposed method improves the sample processing method described in the environmental standard HJ 997-2018: Soil and sediment-Determination of carbonyl compounds-High performance liquid chromatography. A series of experiments revealed the following optimal conditions for soil extraction: acetonitrile as the extraction solvent, extraction temperature of 30 ℃, and extraction time of 10 min. The results showed that the purification effect of the BRP cartridge was significantly better than that of the conventional silica-based C18 cartridge. The 15 carbonyl compounds showed good linearities, and all correlation coefficients were above 0.996. The recoveries ranged from 84.6% to 115.9%, the relative standard deviations (RSDs) ranged from 0.2% to 5.1%, and the detection limits were 0.02-0.06 mg/L. The method is simple, sensitive, and suitable for the accurate quantitative analysis of the 15 carbonyl compounds in soil specified in HJ 997-2018. Thus, the improved method provides reliable technical support for studying the residual status and environmental behavior of carbonyl compounds in soil.

15.
Nanomicro Lett ; 15(1): 9, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36484932

ABSTRACT

Developing advanced thermal interface materials (TIMs) to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices. Based on the ultra-high basal-plane thermal conductivity, graphene is an ideal candidate for preparing high-performance TIMs, preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM. However, the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory. In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved, another critical factor is the limited actual contact area leading to relatively high contact thermal resistance (20-30 K mm2 W-1) of the "solid-solid" mating interface formed by the vertical graphene and the rough chip/heat sink. To solve this common problem faced by vertically aligned graphene, in this work, we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces. Based on rational graphene orientation regulation in the middle tier, the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m-1 K-1. Additionally, we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a "liquid-solid" mating interface, significantly increasing the effective heat transfer area and giving a low contact thermal conductivity of 4-6 K mm2 W-1 under packaging conditions. This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.

16.
World J Gastrointest Oncol ; 14(12): 2329-2339, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36568940

ABSTRACT

BACKGROUND: Nucleus accumbens-1 (NAC-1) is highly expressed in a variety of tumors, including colon cancer, and is closely associated with tumor recurrence, metastasis, and invasion. AIM: To determine whether and how NAC-1 affects antitumor immunity in colon cancer. METHODS: NAC-1-siRNA was transfected into RKO colon cancer cells to knock down NAC expression; tumor cells with or without knockdown of NAC-1 were treated with CD8+ T cells to test their cytocidal effect. The level of the immune checkpoint programmed death receptor-1 ligand (PD-L1) in colon cancer cells with or without knockdown of NAC-1 was analyzed using Quantitative real-time polymerase chain reaction and Western blotting. A double luciferase reporter assay was used to examine the effects of NAC-1 on the transcription of PD-L1. Mice bearing MC-38-OVA colon cancer cells expressing NAC-shRNA or control-shRNA were treated with OT-I mouse CD8+ T cells to determine the tumor response to immunotherapy. Immune cells in the tumor tissues were analyzed using flow cytometry. NAC-1, PD-L1 and CD8+ T cells in colon cancer specimens from patients were examined using immunohistochemistry staining. RESULTS: Knockdown of NAC-1 expression in colon cancer cells significantly enhanced the cytocidal effect of CD8+ T cells in cell culture experiments. The sensitizing effect of NAC-1 knockdown on the antitumor action of cytotoxic CD8+ T cells was recapitulated in a colon cancer xenograft animal model. Furthermore, knockdown of NAC-1 in colon cancer cells decreased the expression of PD-L1 at both the mRNA and protein levels, and this effect could be rescued by transfection of an RNAi-resistant NAC-1 expression plasmid. In a reporter gene assay, transient expression of NAC-1 in colon cancer cells increased the promoter activity of PD-L1, indicating that NAC-1 regulates PD-L1 expression at the transcriptional level. In addition, depletion of tumoral NAC-1 increased the number of CD8+ T cells but decreased the number of suppressive myeloid-derived suppressor cells and regulatory T cells. CONCLUSION: Tumor expression of NAC-1 is a negative determinant of immunotherapy.

17.
Heliyon ; 8(11): e11276, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36353174

ABSTRACT

Objectives: To explore the association between left atrial (LA) strain and the GRACE score in patients with acute coronary syndrome (ACS) and to investigate the utility of LA function in predicting short-term adverse cardiovascular events post ACS. Methods: This retrospective study included ACS patients who underwent coronary angiography (CAG) in two independent cohorts from October 2020 to July 2022. The patients were classified into low-intermediate risk group and high-risk group based on the GRACE score. All participants underwent a transthoracic echocardiogram, with LA strain analysis before CAG. Correlation analysis was used to determine the relationship between LA strain and the GRACE score. The predictive value of LA strain was examined utilizing the area under the curve (AUC). Participants were followed for 10.5 ± 2.9 months for the primary endpoint of major adverse cardiovascular events (MACE). Results: A total of 229 patients were included in this study, including 196 in the primary group and 33 in the validation group. Spearman's correlation analysis showed there was a moderate negative correlation between the GRACE and left atrial reservoir strain (LASr) in both the primary (r = -0.63, P < 0.001) and validation (r = -0.73, P < 0.001) cohorts. Receiver operator characteristic (ROC) curve analysis showed that the AUC of LASr for prediction of the high-risk group was 0.86. Taking LASr 19.6% as the cut-off value, the sensitivity and specificity were 0.71 and 0.92, respectively. The cut-off value of 19.6% remains good at identifying high-risk group in the validation group (AUC = 0.87, sensitivity: 77.8%, specificity: 95.8%). Furthermore, 49 patients reached the endpoint in the primary cohort during the follow-up. On multivariable regression analysis, LASr (P = 0.03) was the independent echocardiographic predictor for the primary endpoint, rather than left atrial volume index (LAVI). Conclusions: LASr can identify high-risk patients with ACS as defined by the GRACE score and may be superior to Max LAVI in predicting incidents of MACE in the short-term following ACS.

18.
Article in English | MEDLINE | ID: mdl-36267089

ABSTRACT

Purpose: To investigate the role and molecular mechanism of HDAC2 in glioma. Methods: GSE16011, GSE31262, and GSE90598 datasets were used to identify co-expressed genes, GO analysis, and KEGG analysis to identify gene enrichment pathways, and PPI networks were constructed to identify gene interrelationships. HDAC2 enrichment on DNMT3B promoter and DNMT3B enrichment on Bcl2 CpG island was detected by a ChIP assay. The expression, prognosis, and hierarchical distribution of HDAC2, DNMT3B, and Bcl2 were examined in the CGGA database, and the correlation between HDAC2 and DNMT3B, Bcl2, and DNMT3B and Bcl2 was assessed. Results: The HDAC2-DNMT3B-Bcl2 axis is differentially expressed and interacts in gliomas. HDAC2 activates the transcriptional activity of DNMT3B, and DNMT3B inhibits the expression of Bcl2. HDAC2 and DNMT3B are highly expressed in gliomas and have a poor prognosis, while Bcl2 is lowly expressed in gliomas and has a good prognosis. Conclusion: HDAC2 promotes DNMT3B transcriptional repression of Bcl2 expression and Wnt pathway activity, thereby activating glioma cell activity in vitro and in vivo.

19.
J Clin Lab Anal ; 36(11): e24721, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36196481

ABSTRACT

BACKGROUND: The major histocompatibility complex (MHC) has been implicated in schizophrenia. This study aimed to explore the correlation between the major histocompatibility complex class I polypeptide-related sequence A (MICA) polymorphisms and schizophrenia. METHODS: A total of 220 Han schizophrenia patients, 47 Han healthy controls, 155 Li schizophrenia patients, and 48 Li controls were selected from Hainan Province, China. The diagnosis was made according to the Diagnostic and Statistical Manual of Mental Disorders, 4th edition, criteria. Sequencing-based-typing (PCR-SBT) technology was used for MICA allele typing, and the correlation analyses of MICA gene polymorphism and schizophrenia were performed. RESULTS: In the Han group, the three allele frequencies of MICA*002:01, MICA*A4, and MICA*A9 in the schizophrenia group were significantly higher than those in the healthy control group, and the differences were statistically significant (pc < 0.05; pc values were 0.024, 0.030, and 0.031, respectively). Yet, there was no difference in the MICA gene between the schizophrenia group and the healthy controls group in the Li population. CONCLUSION: We found MICA*002:01, MICA*A4, and MICA*A9 may be susceptibility alleles for schizophrenia in the Han population, while the MICA allele polymorphism in the Li population is not associated with schizophrenia in Chinese.


Subject(s)
Histocompatibility Antigens Class I , Schizophrenia , Humans , Alleles , Gene Frequency , Genetic Predisposition to Disease , Polymorphism, Genetic , Schizophrenia/genetics , Histocompatibility Antigens Class I/genetics
20.
Front Nutr ; 9: 1007863, 2022.
Article in English | MEDLINE | ID: mdl-36185648

ABSTRACT

The flavonoids in Cornus officinalis (CO) have various pharmacological activities, however, the flavonoid instability limits its application in food and pharmaceutical industries. In this study, Cornus officinalis flavonoid (COF) microcapsules were prepared by using a combination of whey isolate protein (WPI), soy isolate protein (SPI), gelatin (GE), and maltodextrin (MD) as wall materials, respectively. Meanwhile, the encapsulation efficiency, solubility, color, particle size, thermal stability and microstructure as well as the antioxidant capacity of microcapsules were assessed. When the protein/MD ratio was 3:7, three kinds of combined wall materials realized high encapsulation efficiency (96.32-98.24%) and water solubility index (89.20-90.10%). Compared with other wall material combinations, the microcapsules with WPI-MD wall ratio at 3:7 had lower particle size (7.17 µm), lower moisture content (6.13%), higher encapsulation efficiency (98.24%), better water solubility index (90.1%), higher thermal stability (86.00°C), brightness L* (67.84) and higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging capacity (6.98 mgVc/g), and better flowability. Results suggested that WPI and MD could be better wall materials applied in encapsulating COF.

SELECTION OF CITATIONS
SEARCH DETAIL
...