Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 14(9): 204, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39161880

ABSTRACT

Heat shock protein 90 (HSP90) is important for many organisms, including plants. Based on the whole genome information, the gene number, gene structure, evolutionary relationship, protein structure, and active site of the HSP90 gene family in Rosa chinensis and Rubus idaeus were determined, and the expression of the HSP90 gene under salt, and drought stresses in two rose varieties Wangxifeng and Sweet Avalanche were analyzed. Six and eight HSP90 genes were identified from R. chinensis and Ru. idaeus, respectively. Phylogenetic analysis revealed that the analyzed genes were divided into two Groups and four subgroups (Classes 1a, 1b, 2a, and 2b). Although members within the same classes displayed highly similar gene structures, while the gene structures and conserved domains of Group 1 (Class 1a and 1b) and the Group 2 (Class 2a and 2b) are different. Tandem and segmental duplication genes were found in Ru. idaeus, but not in R. chinensis, perhaps explaining the difference in HSP90 gene quantity in the two analyzed species. Analysis of cis-acting elements revealed abundant abiotic stress, photolight-response, and hormone-response elements in R. chinensis HSP90s. qRT-PCR analysis suggested that RcHSP90-1-1, RcHSP90-5-1 and RcHSP90-6-1 in Sweet Avalanche and Wangxifeng varieties played important regulatory roles under salt and drought stress. The analysis of protein structure and active sites indicate that the potential different roles of RcHSP90-1-1, RcHSP90-5-1, and RcHSP90-6-1 in salt and drought stresses may come from the differences of corresponding protein structures and activation sites. These data will provide information for the breeding of rose varieties with high stress resistance. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04052-0.

2.
Small ; : e2405174, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39072996

ABSTRACT

Two-dimensional (2D) van der Waals heterostructures endow individual 2D material with the novel functional structures, intriguing compositions, and fantastic interfaces, which efficiently provide a feasible route to overcome the intrinsic limitations of single 2D components and embrace the distinct features of different materials. However, the construction of 2D heterostructures with uniform heterointerfaces still poses significant challenges. Herein, a universal in-situ interfacial growth strategy is designed to controllably prepare a series of MXene-based tin selenides/sulfides with 2D van der Waals homogeneous heterostructures. Molten salt etching by-products that are usually recognized as undesirable impurities, are reasonably utilized by us to efficiently transform into different 2D nanostructures via in-situ interfacial growth. The obtained MXene-based 2D heterostructures present sandwiched structures and lamellar interlacing networks with uniform heterointerfaces, which demonstrate the efficient conversion from 3D composite to 2D heterostructures. Such 2D heterostructures significantly enhance charge transfer efficiency, chemical reversibility, and overall structural stability in the electrochemical process. Taking 2D-SnSe2/MXene anode as a representative, it delivers outstanding lithium storage performance with large reversible capacities and ultrahigh capacity retention of over 97% after numerous cycles at 0.2, 1.0, and 10.0 A g-1 current density, which suggests its tremendous application potential in lithium-ion batteries.

3.
Acta Pharm Sin B ; 14(4): 1759-1771, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572100

ABSTRACT

Bacterial biofilm-associated infection was one of the most serious threats to human health. However, effective drugs for drug-resistance bacteria or biofilms remain rarely reported. Here, we propose an innovative strategy to develop a multifunctional antimicrobial agent with broad-spectrum antibacterial activity by coupling photosensitizers (PSs) with antimicrobial peptides (AMPs). This strategy capitalizes on the ability of PSs to generate reactive oxygen species (ROS) and the membrane-targeting property of AMPs (KRWWKWIRW, a peptide screened by an artificial neural network), synergistically enhancing the antimicrobial activity. In addition, unlike conventional aggregation-caused quenching (ACQ) photosensitizers, aggregation-induced emission (AIE) PSs show stronger fluorescence emission in the aggregated state to help visualize the antibacterial mechanism. In vitro antibacterial experiments demonstrated the excellent killing effects of the developed agent against both Gram-positive (G+) and Gram-negative (G-) bacteria. The bacterial-aggregations induced ability enhanced the photoactivatable antibacterial activity against G- bacteria. Notably, it exhibited a significant effect on destroying MRSA biofilms. Moreover, it also showed remarkable efficacy in treating wound infections in mice in vivo. This multifunctional antimicrobial agent holds significant potential in addressing the challenges posed by bacterial biofilm-associated infections and drug-resistant bacteria.

4.
J Colloid Interface Sci ; 663: 61-72, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38387187

ABSTRACT

Efficient carriers separation and multiple nitrogen (N2) activation sites are essential for N2 photo-fixation. Here, we found that the BiOBr/TiO2 (BBTO) displayed an attractive reversible photochromism (white → grey) due to the generation of electron deficient Bi3+δ, which was produced by the hole trapping of Bi3+ under light irradiation. Interestingly, more Bi3+δ were detected in the BBTO heterojunction than in pure BiOBr, attributing that the hole trapping was promoted by the built-in electric field in the Step scheme (S-scheme) heterojunction. In the BBTO, the electron deficient Bi3+δ enhanced carriers separation and served as the reactive active site to adsorb more N2. Consequently, the BBTO possessed an excellent N2 photo-fixation activity (191 µmol gcat-1 h-1), which was 7.7 and 18 times higher than that of pure BiOBr (24.8 µmol gcat-1 h-1) and TiO2 (10.6 µmol gcat-1 h-1), respectively. Therefore, this work provides a new perspective for enhancing N2 photo-fixation by the electron deficient photocatalysts with S-scheme heterojunction.

SELECTION OF CITATIONS
SEARCH DETAIL