Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Chem Biol ; 31(5): 920-931.e6, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759618

ABSTRACT

T cell receptor (TCR) plays a fundamental role in adaptive immunity, and TCR-T cell therapy holds great promise for treating solid tumors and other diseases. However, there is a noticeable absence of chemical tools tuning TCR activity. In our study, we screened natural sterols for their regulatory effects on T cell function and identified 7-alpha-hydroxycholesterol (7a-HC) as a potent inhibitor of TCR signaling. Mechanistically, 7a-HC promoted membrane binding of CD3ε cytoplasmic domain, a crucial signaling component of the TCR-CD3 complex, through alterations in membrane physicochemical properties. Enhanced CD3ε membrane binding impeded the condensation between CD3ε and the key kinase Lck, thereby inhibiting Lck-mediated TCR phosphorylation. Transient treatments of TCR-T cells with 7a-HC resulted in reduced signaling strength, increased memory cell populations, and superior long-term antitumor functions. This study unveils a chemical regulation of TCR signaling, which can be exploited to enhance the long-term efficacy of TCR-T cell therapy.


Subject(s)
Hydroxycholesterols , Receptors, Antigen, T-Cell , Signal Transduction , Signal Transduction/drug effects , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Humans , Hydroxycholesterols/chemistry , Hydroxycholesterols/metabolism , Hydroxycholesterols/pharmacology , Animals , Mice , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice, Inbred C57BL , Phosphorylation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...