Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 10: 1171806, 2023.
Article in English | MEDLINE | ID: mdl-37492592

ABSTRACT

Objective: Diets high in glucose or fat contribute to an increased prevalence of the diseases. Therefore, the objective of the current research was to observe and evaluate the impact of dietary components on different metabolomic profiles in primary tissues of mice. Methods: For 8 weeks, diet with high-glucose or-fat was given to C57BL/6 J mice. The levels of metabolites in the primary tissues of mice were studied using gas chromatography-mass spectrometry (GC-MS) and analyzed using multivariate statistics. Results: By comparing the metabolic profiles between the two diet groups and control group in mice main tissues, our study revealed 32 metabolites in the high-glucose diet (HGD) group and 28 metabolites in the high-fat diet (HFD) group. The most significantly altered metabolites were amino acids (AAs; L-alanine, L-valine, glycine, L-aspartic acid, L-isoleucine, L-leucine, L-threonine, L-glutamic acid, phenylalanine, tyrosine, serine, proline, and lysine), fatty acids (FAs; propanoic acid, 9,12-octadecadienoic acid, pentadecanoic acid, hexanoic acid, and myristic acid), and organic compounds (succinic acid, malic acid, citric acid, L-(+)-lactic acid, myo-inositol, and urea). These metabolites are implicated in many metabolic pathways related to energy, AAs, and lipids metabolism. Conclusion: We systematically analyzed the metabolic changes underlying high-glucose or high-fat diet. The two divergent diets induced patent changes in AA and lipid metabolism in the main tissues, and helped identify metabolic pathways in a mouse model.

2.
J Inflamm Res ; 14: 2941-2953, 2021.
Article in English | MEDLINE | ID: mdl-34239317

ABSTRACT

PURPOSE: Inflammatory bowel diseases (IBD) are a chronic inflammatory disease, which affects almost all tissues in the body. Previous studies mainly focused on breathing, fecal, and urine samples of patients with IBD. However, there is no comprehensive metabolomic analysis of the serum, colon, heart, liver, kidney, cortex, hippocampus, and brown fat tissues. Therefore, the aim of our study is to evaluate the utility metabolomic analysis of target tissues in the pathogenesis of IBD in exploring new biomarkers for early diagnosis and treatment. METHODS: Male Sprague-Dawley rats were randomly allocated to control and DSS-treated groups (n = 7). Dextran sulfate sodium (DSS) was orally administered for 6 weeks. Gas chromatography-mass spectrometry (GC-MS) was used for metabolite determination, multivariate statistical analysis was used to identify metabolites that were differentially expressed in two groups. RESULTS: Our results showed that 3, 11, 12, 6, 5, 13, 13, and 11 metabolites were differentially expressed between the DSS treatment group and the control group in the serum, colon, heart, liver, kidney, cortex, hippocampus, and brown fat tissues, respectively. The most significant change of metabolites in the study was amino acid (L-alanine, L-glutamic acid, L-phenylalanine, L-proline, L-lysine, L-isoleucine, L-tryptophan, L-norleucine, L-valine, glycine, serine, L-threonine), organic acid (citric acid, 3-hydroxybutyric acid, propanoic acid), glucide (D-arabinose, D-fructose) and purine (9H-purin-6-ol, D-ribose) profiles. Several pathways were affected according to the integrated pathway analysis. These pathways ranged from amino acid metabolism (such as alanine, aspartate, and glutamate metabolism, glutathione metabolism) to purine metabolism (aminoacyl-tRNA biosynthesis). CONCLUSION: Using GC-MS-based profiling of metabolite changes, these results may provide a more comprehensive view for IBD and IBD-related diseases and improve the understanding of IBD pathogenesis.

3.
J Diabetes ; 7(3): 322-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25047138

ABSTRACT

BACKGROUND: The aim of the present study was to compare the reported efficacy and safety of glucagon-like peptide-l receptor agonist (GLP-1RA) and insulin glargine (IGlar) for poorly controlled type 2 diabetes. METHODS: Medline, EMBASE, Cochrane Library, and clinicaltrials.gov were carried out. References and cited papers of relevant articles were also checked. RESULTS: Seven trials met the inclusion criteria. GLP-1RA showed equivalent or superior efficacy to IGlar for reducing hemoglobin A1c (HbA1c), with a greater proportion of patients achieving HbAlc<7%. GLP-1RA also favored decreased body weight, total cholesterol (TC), low-density lipoprotein (LDL), and systolic blood pressure (SBP). Serious adverse events were uncommon and not significantly different. More patients taking GLP-1RA experienced gastrointestinal complications: nausea, diarrhea, and vomiting. Severe hypoglycemia events were rare, and minor hypoglycemia was less common for GLP-1RA. CONCLUSIONS: GLP-1RA showed greater efficacy compared to IGlar for type 2 diabetes, and it may also prove beneficial for other diabetes-associated characteristics, including obesity, hypertension, and hyperlipidemia.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/therapeutic use , Insulin Glargine/therapeutic use , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...