Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Sci Transl Med ; 16(738): eadg3665, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478631

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by the death of upper (UMN) and lower motor neurons (LMN) in the motor cortex, brainstem, and spinal cord. Despite decades of research, ALS remains incurable, challenging to diagnose, and of extremely rapid progression. A unifying feature of sporadic and familial forms of ALS is cortical hyperexcitability, which precedes symptom onset, negatively correlates with survival, and is sufficient to trigger neurodegeneration in rodents. Using electrocorticography in the Sod1G86R and FusΔNLS/+ ALS mouse models and standard electroencephalography recordings in patients with sporadic ALS, we demonstrate a deficit in theta-gamma phase-amplitude coupling (PAC) in ALS. In mice, PAC deficits started before symptom onset, and in patients, PAC deficits correlated with the rate of disease progression. Using mass spectrometry analyses of CNS neuropeptides, we identified a presymptomatic reduction of noradrenaline (NA) in the motor cortex of ALS mouse models, further validated by in vivo two-photon imaging in behaving SOD1G93A and FusΔNLS/+ mice, that revealed pronounced reduction of locomotion-associated NA release. NA deficits were also detected in postmortem tissues from patients with ALS, along with transcriptomic alterations of noradrenergic signaling pathways. Pharmacological ablation of noradrenergic neurons with DSP-4 reduced theta-gamma PAC in wild-type mice and administration of a synthetic precursor of NA augmented theta-gamma PAC in ALS mice. Our findings suggest theta-gamma PAC as means to assess and monitor cortical dysfunction in ALS and warrant further investigation of the NA system as a potential therapeutic target.


Subject(s)
Amyotrophic Lateral Sclerosis , Autonomic Nervous System Diseases , Dopamine beta-Hydroxylase/deficiency , Neurodegenerative Diseases , Norepinephrine/deficiency , Humans , Mice , Animals , Amyotrophic Lateral Sclerosis/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Neurodegenerative Diseases/metabolism , Spinal Cord/metabolism , Disease Models, Animal , Mice, Transgenic , Superoxide Dismutase/metabolism
2.
Biomolecules ; 12(4)2022 03 24.
Article in English | MEDLINE | ID: mdl-35454086

ABSTRACT

CHMP2B is a protein that coordinates membrane scission events as a core component of the ESCRT machinery. Mutations in CHMP2B are an uncommon cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two neurodegenerative diseases with clinical, genetic, and pathological overlap. Different mutations have now been identified across the ALS-FTD spectrum. Disruption of the neuromuscular junction is an early pathogenic event in ALS. Currently, the links between neuromuscular junction functionality and ALS-associated genes, such as CHMP2B, remain poorly understood. We have previously shown that CHMP2B transgenic mice expressing the CHMP2Bintron5 mutant specifically in neurons develop a progressive motor phenotype reminiscent of ALS. In this study, we used complementary approaches (behavior, histology, electroneuromyography, and biochemistry) to determine the extent to which neuron-specific expression of CHMP2Bintron5 could impact the skeletal muscle characteristics. We show that neuronal expression of the CHMP2Bintron5 mutant is sufficient to trigger progressive gait impairment associated with structural and functional changes in the neuromuscular junction. Indeed, CHMP2Bintron5 alters the pre-synaptic terminal organization and the synaptic transmission that ultimately lead to a switch of fast-twitch glycolytic muscle fibers to more oxidative slow-twitch muscle fibers. Taken together these data indicate that neuronal expression of CHMP2Bintron5 is sufficient to induce a synaptopathy with molecular and functional changes in the motor unit reminiscent of those found in ALS patients.


Subject(s)
Amyotrophic Lateral Sclerosis , Endosomal Sorting Complexes Required for Transport , Frontotemporal Dementia , Nerve Tissue Proteins , Neuromuscular Junction , Amyotrophic Lateral Sclerosis/genetics , Animals , Disease Models, Animal , Endosomal Sorting Complexes Required for Transport/genetics , Frontotemporal Dementia/genetics , Humans , Mice , Muscles/metabolism , Nerve Tissue Proteins/genetics , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Neurons/metabolism
3.
Br J Pharmacol ; 179(8): 1732-1752, 2022 04.
Article in English | MEDLINE | ID: mdl-34783031

ABSTRACT

BACKGROUND AND PURPOSE: Amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by the degeneration of upper and lower motor neurons, progressive wasting and paralysis of voluntary muscles and is currently incurable. Although considered to be a pure motor neuron disease, increasing evidence indicates that the sole protection of motor neurons by a single targeted drug is not sufficient to improve the pathological phenotype. We therefore evaluated the therapeutic potential of the multi-target drug used to treatment of coronary artery disease, trimetazidine, in SOD1G93A mice. EXPERIMENTAL APPROACH: As a metabolic modulator, trimetazidine improves glucose metabolism. Furthermore, trimetazidine enhances mitochondrial metabolism and promotes nerve regeneration, exerting an anti-inflammatory and antioxidant effect. We orally treated SOD1G93A mice with trimetazidine, solubilized in drinking water at a dose of 20 mg kg-1 , from disease onset. We assessed the impact of trimetazidine on disease progression by studying metabolic parameters, grip strength and histological alterations in skeletal muscle, peripheral nerves and the spinal cord. KEY RESULTS: Trimetazidine administration delays motor function decline, improves muscle performance and metabolism, and significantly extends overall survival of SOD1G93A mice (increased median survival of 16 days and 12.5 days for male and female respectively). Moreover, trimetazidine prevents the degeneration of neuromuscular junctions, attenuates motor neuron loss and reduces neuroinflammation in the spinal cord and in peripheral nerves. CONCLUSION AND IMPLICATIONS: In SOD1G93A mice, therapeutic effect of trimetazidine is underpinned by its action on mitochondrial function in skeletal muscle and spinal cord.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Trimetazidine , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Animals , Disease Models, Animal , Drug Repositioning , Female , Male , Mice , Mice, Transgenic , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Trimetazidine/pharmacology , Trimetazidine/therapeutic use
4.
Life (Basel) ; 13(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36676070

ABSTRACT

Amyotrophic Lateral Sclerosis is a progressive neurodegenerative disease and is the most common adult motor neuron disease. The disease pathogenesis is complex with the perturbation of multiple pathways proposed, including mitochondrial dysfunction, RNA processing, glutamate excitotoxicity, endoplasmic reticulum stress, protein homeostasis and endosomal transport/extracellular vesicle (EV) secretion. EVs are nanoscopic membrane-bound particles that are released from cells, involved in the intercellular communication of proteins, lipids and genetic material, and there is increasing evidence of their role in ALS. After discussing the biogenesis of EVs, we review their roles in the propagation of pathological proteins in ALS, such as TDP-43, SOD1 and FUS, and their contribution to disease pathology. We also discuss the ALS related genes which are involved in EV formation and vesicular trafficking, before considering the EV protein and RNA dysregulation found in ALS and how these have been investigated as potential biomarkers. Finally, we highlight the potential use of EVs as therapeutic agents in ALS, in particular EVs derived from mesenchymal stem cells and EVs as drug delivery vectors for potential treatment strategies.

5.
Cells ; 10(6)2021 06 09.
Article in English | MEDLINE | ID: mdl-34207859

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive and selective loss of motor neurons, amyotrophy and skeletal muscle paralysis usually leading to death due to respiratory failure. While generally considered an intrinsic motor neuron disease, data obtained in recent years, including our own, suggest that motor neuron protection is not sufficient to counter the disease. The dismantling of the neuromuscular junction is closely linked to chronic energy deficit found throughout the body. Metabolic (hypermetabolism and dyslipidemia) and mitochondrial alterations described in patients and murine models of ALS are associated with the development and progression of disease pathology and they appear long before motor neurons die. It is clear that these metabolic changes participate in the pathology of the disease. In this review, we summarize these changes seen throughout the course of the disease, and the subsequent impact of glucose-fatty acid oxidation imbalance on disease progression. We also highlight studies that show that correcting this loss of metabolic flexibility should now be considered a major goal for the treatment of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Muscle, Skeletal/metabolism , Animals , Humans , Male , Muscle, Skeletal/pathology , Superoxide Dismutase-1/metabolism
6.
Neurobiol Dis ; 152: 105289, 2021 05.
Article in English | MEDLINE | ID: mdl-33577922

ABSTRACT

Large polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies.


Subject(s)
Cholesterol/biosynthesis , Spinal Cord/pathology , Spinocerebellar Ataxias/pathology , TDP-43 Proteinopathies/pathology , Animals , Ataxin-2 , Disease Models, Animal , Gene Knock-In Techniques , Mice , Spinal Cord/metabolism , Spinocerebellar Ataxias/metabolism , TDP-43 Proteinopathies/metabolism
7.
Semin Cell Dev Biol ; 112: 82-91, 2021 04.
Article in English | MEDLINE | ID: mdl-33160824

ABSTRACT

Sphingolipids are complex lipids. They play a structural role in neurons, but are also involved in regulating cellular communication, and neuronal differentiation and maturation. There is increasing evidence to suggest that dysregulated metabolism of sphingolipids is linked to neurodegenerative processes in amyotrophic lateral sclerosis (ALS), Parkinson's disease and Gaucher's disease. In this review, we provide an overview of the role of sphingolipids in the development and maintenance of the nervous system. We describe the implications of altered metabolism of sphingolipids in the pathophysiology of certain neurodegenerative diseases, with a primary focus on ALS. Finally, we provide an update of potential treatments that could be used to target the metabolism of sphingolipids in neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Lipid Metabolism/genetics , Neurodegenerative Diseases/metabolism , Sphingolipids/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Central Nervous System/metabolism , Central Nervous System/pathology , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Sphingolipids/genetics
8.
Brain Commun ; 2(2): fcaa154, 2020.
Article in English | MEDLINE | ID: mdl-33241210

ABSTRACT

Amyotrophic lateral sclerosis is characterized by the degeneration of upper and lower motor neurons, yet an increasing number of studies in both mouse models and patients with amyotrophic lateral sclerosis suggest that altered metabolic homeostasis is also a feature of disease. Pre-clinical and clinical studies have shown that modulation of energy balance can be beneficial in amyotrophic lateral sclerosis. However, the capacity to target specific metabolic pathways or mechanisms requires detailed understanding of metabolic dysregulation in amyotrophic lateral sclerosis. Here, using the superoxide dismutase 1, glycine to alanine substitution at amino acid 93 (SOD1G93A) mouse model of amyotrophic lateral sclerosis, we demonstrate that an increase in whole-body metabolism occurs at a time when glycolytic muscle exhibits an increased dependence on fatty acid oxidation. Using myotubes derived from muscle of amyotrophic lateral sclerosis patients, we also show that increased dependence on fatty acid oxidation is associated with increased whole-body energy expenditure. In the present study, increased fatty acid oxidation was associated with slower disease progression. However, within the patient cohort, there was considerable heterogeneity in whole-body metabolism and fuel oxidation profiles. Thus, future studies that decipher specific metabolic changes at an individual patient level are essential for the development of treatments that aim to target metabolic pathways in amyotrophic lateral sclerosis.

9.
Eur J Pharmacol ; 884: 173446, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32739173

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in adults. While it is primarily characterized by the death of upper and lower motor neurons, there is a significant metabolic component involved in the progression of the disease. Two-thirds of ALS patients have metabolic alterations that are associated with the severity of symptoms. In ALS, as in other neurodegenerative diseases, the metabolism of glycosphingolipids, a class of complex lipids, is strongly dysregulated. We therefore assume that this pathway constitutes an interesting avenue for therapeutic approaches. We have shown that the glucosylceramide degrading enzyme, glucocerebrosidase (GBA) 2 is abnormally increased in the spinal cord of the SOD1G86R mouse model of ALS. Ambroxol, a chaperone molecule that inhibits GBA2, has been shown to have beneficial effects by slowing the development of the disease in SOD1G86R mice. Currently used in clinical trials for Parkinson's and Gaucher disease, ambroxol could be considered as a promising therapeutic treatment for ALS.


Subject(s)
Ambroxol/pharmacology , Amyotrophic Lateral Sclerosis/drug therapy , Drug Repositioning , Enzyme Inhibitors/pharmacology , Nerve Degeneration , Neuroprotective Agents/pharmacology , Spinal Cord/drug effects , beta-Glucosidase/antagonists & inhibitors , Amyotrophic Lateral Sclerosis/enzymology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Disease Models, Animal , Disease Progression , Glucosylceramidase/antagonists & inhibitors , Glucosylceramidase/metabolism , Humans , Mutation , Spinal Cord/enzymology , Spinal Cord/pathology , Superoxide Dismutase-1/genetics , beta-Glucosidase/metabolism
10.
iScience ; 23(5): 101087, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32371370

ABSTRACT

Patients with ALS show, in addition to the loss of motor neurons in the spinal cord, brainstem, and cerebral cortex, an abnormal depletion of energy stores alongside hypermetabolism. In this study, we show that bioenergetic defects and muscle remodeling occur in skeletal muscle of the SOD1G93A mouse model of ALS mice prior to disease onset and before the activation of muscle denervation markers, respectively. These changes in muscle physiology were followed by an increase in energy expenditure unrelated to physical activity. Finally, chronic treatment of SOD1G93A mice with Ranolazine, an FDA-approved inhibitor of fatty acid ß-oxidation, led to a decrease in energy expenditure in symptomatic SOD1G93A mice, and this occurred in parallel with a robust, albeit temporary, recovery of the pathological phenotype.

11.
Neurobiol Dis ; 136: 104710, 2020 03.
Article in English | MEDLINE | ID: mdl-31837425

ABSTRACT

Amyotrophic lateral sclerosis and frontotemporal dementia are two neurodegenerative diseases with currently no cure. These two diseases share a clinical continuum with overlapping genetic causes. Mutations in the CHMP2B gene are found in patients with ALS, FTD and ALS-FTD. To highlight deregulated mechanisms occurring in ALS-FTD linked to the CHMP2B gene, we performed a whole transcriptomic study on lumbar spinal cord from CHMP2Bintron5 mice, a model that develops progressive motor alterations associated with dementia symptoms reminiscent of both ALS and FTD. To gain insight into the transcriptomic changes taking place during disease progression this study was performed at three stages: asymptomatic, symptomatic and end stage. We showed that before appearance of motor symptoms, the major disrupted mechanisms were linked with the immune system/inflammatory response and lipid metabolism. These processes were progressively replaced by alterations of neuronal electric activity as motor symptoms appeared, alterations that could lead to motor neuron dysfunction. To investigate overlapping alterations in gene expression between two ALS-causing genes, we then compared the transcriptome of symptomatic CHMP2Bintron5 mice with the one of symptomatic SOD1G86R mice and found the same families deregulated providing further insights into common underlying dysfunction of biological pathways, disrupted or disturbed in ALS. Altogether, this study provides a database to explore potential new candidate genes involved in the CHMP2Bintron5-based pathogenesis of ALS, and provides molecular clues to further understand the functional consequences that diseased neurons expressing CHMP2B mutant may have on their neighbor cells.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Disease Models, Animal , Endosomal Sorting Complexes Required for Transport/genetics , Frontotemporal Dementia/genetics , Nerve Tissue Proteins/genetics , Superoxide Dismutase-1/genetics , Transcriptome/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Endosomal Sorting Complexes Required for Transport/biosynthesis , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/biosynthesis , Spinal Cord/metabolism , Spinal Cord/pathology
13.
Autoimmun Rev ; 16(8): 856-874, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28572049

ABSTRACT

Autophagy is a metabolically-central process that is crucial in diverse areas of cell physiology. It ensures a fair balance between life and death molecular and cellular flows, and any disruption in this vital intracellular pathway can have consequences leading to major diseases such as cancer, metabolic and neurodegenerative disorders, and cardiovascular and pulmonary diseases. Recent pharmacological studies have shown evidence that small molecules and peptides able to activate or inhibit autophagy might be valuable therapeutic agents by down- or up-regulating excessive or defective autophagy, or to modulate normal autophagy to allow other drugs to repair some cell alteration or destroy some cell subsets (e.g. in the case of cancer concurrent treatments). Here, we provide an overview of neuronal autophagy and of its potential implication in some inflammatory diseases of central and peripheral nervous systems. Based on our own studies centred on a peptide called P140 that targets autophagy, we highlight the validity of autophagy processes, and in particular of chaperone-mediated autophagy, as a particularly pertinent pathway for developing novel selective therapeutic approaches for treating some neuronal diseases. Our findings with the P140 peptide support a direct cross-talk between autophagy and certain central and peripheral neuronal diseases. They also illustrate the fact that autophagy alterations are not evenly distributed across all organs and tissues of the same individual, and can evolve in different stages along the disease course.


Subject(s)
Autophagy , Central Nervous System Diseases , Neurodegenerative Diseases , Peripheral Nervous System Diseases , Animals , Central Nervous System Diseases/immunology , Humans , Inflammation/immunology , Neurodegenerative Diseases/immunology , Peptide Fragments/immunology , Peripheral Nervous System Diseases/immunology
14.
Acta Neuropathol ; 133(6): 887-906, 2017 06.
Article in English | MEDLINE | ID: mdl-28243725

ABSTRACT

Motor neuron-extrinsic mechanisms have been shown to participate in the pathogenesis of ALS-SOD1, one familial form of amyotrophic lateral sclerosis (ALS). It remains unclear whether such mechanisms contribute to other familial forms, such as TDP-43 and FUS-associated ALS. Here, we characterize a single-copy mouse model of ALS-FUS that conditionally expresses a disease-relevant truncating FUS mutant from the endogenous murine Fus gene. We show that these mice, but not mice heterozygous for a Fus null allele, develop similar pathology as ALS-FUS patients and a mild motor neuron phenotype. Most importantly, CRE-mediated rescue of the Fus mutation within motor neurons prevented degeneration of motor neuron cell bodies, but only delayed appearance of motor symptoms. Indeed, we observed downregulation of multiple myelin-related genes, and increased numbers of oligodendrocytes in the spinal cord supporting their contribution to behavioral deficits. In all, we show that mutant FUS triggers toxic events in both motor neurons and neighboring cells to elicit motor neuron disease.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Motor Neurons/metabolism , RNA-Binding Protein FUS/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Axons/metabolism , Axons/pathology , Cytoplasm/metabolism , Cytoplasm/pathology , Disease Models, Animal , Male , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/physiology , Motor Neurons/pathology , Muscle, Skeletal/innervation , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mutation , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Oligodendroglia/metabolism , Oligodendroglia/pathology , RNA, Messenger/metabolism , RNA-Binding Protein FUS/genetics , Spinal Cord/metabolism , Spinal Cord/pathology
15.
Hum Mol Genet ; 25(15): 3341-3360, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27329763

ABSTRACT

Mutations in the charged multivesicular body protein 2B (CHMP2B) are associated with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), and with a mixed ALS-FTD syndrome. To model this syndrome, we generated a transgenic mouse line expressing the human CHMP2Bintron5 mutant in a neuron-specific manner. These mice developed a dose-dependent disease phenotype. A longitudinal study revealed progressive gait abnormalities, reduced muscle strength and decreased motor coordination. CHMP2Bintron5 mice died due to generalized paralysis. When paralyzed, signs of denervation were present as attested by altered electromyographic profiles, by decreased number of fully innervated neuromuscular junctions, by reduction in size of motor endplates and by a decrease of sciatic nerve axons area. However, spinal motor neurons cell bodies were preserved until death. In addition to the motor dysfunctions, CHMP2Bintron5 mice progressively developed FTD-relevant behavioural modifications such as disinhibition, stereotypies, decrease in social interactions, compulsivity and change in dietary preferences. Furthermore, neurons in the affected spinal cord and brain regions showed accumulation of p62-positive cytoplasmic inclusions associated or not with ubiquitin and CHMP2Bintron5 As observed in FTD3 patients, these inclusions were negative for TDP-43 and FUS. Moreover, astrogliosis and microgliosis developed with age. Altogether, these data indicate that the neuronal expression of human CHMP2Bintron5 in areas involved in motor and cognitive functions induces progressive motor alterations associated with dementia symptoms and with histopathological hallmarks reminiscent of both ALS and FTD.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Behavior, Animal , Endosomal Sorting Complexes Required for Transport/biosynthesis , Frontotemporal Dementia/metabolism , Gene Expression Regulation , Introns , Mutation , Neurons/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Axons/metabolism , Axons/pathology , Endosomal Sorting Complexes Required for Transport/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/physiopathology , Humans , Mice , Mice, Transgenic , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neurons/pathology , Sciatic Nerve/metabolism , Sciatic Nerve/pathology , Sciatic Nerve/physiopathology
16.
FASEB J ; 30(5): 1696-711, 2016 05.
Article in English | MEDLINE | ID: mdl-26718890

ABSTRACT

Besides its crucial role in the pathogenesis of Alzheimer's disease, the knowledge of amyloid precursor protein (APP) physiologic functions remains surprisingly scarce. Here, we show that APP regulates the transcription of the glial cell line-derived neurotrophic factor (GDNF). APP-dependent regulation of GDNF expression affects muscle strength, muscular trophy, and both neuronal and muscular differentiation fundamental for neuromuscular junction (NMJ) maturation in vivo In a nerve-muscle coculture model set up to modelize NMJ formation in vitro, silencing of muscular APP induces a 30% decrease in secreted GDNF levels and a 40% decrease in the total number of NMJs together with a significant reduction in the density of acetylcholine vesicles at the presynaptic site and in neuronal maturation. These defects are rescued by GDNF expression in muscle cells in the conditions where muscular APP has been previously silenced. Expression of GDNF in muscles of amyloid precursor protein null mice corrected the aberrant synaptic morphology of NMJs. Our findings highlight for the first time that APP-dependent GDNF expression drives the process of NMJ formation, providing new insights into the link between APP gene regulatory network and physiologic functions.-Stanga, S., Zanou, N., Audouard, E., Tasiaux, B., Contino, S., Vandermeulen, G., René, F., Loeffler, J.-P., Clotman, F., Gailly, P., Dewachter, I., Octave, J.-N., Kienlen-Campard, P. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Fibroblasts/physiology , Gene Expression Regulation/physiology , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Neuromuscular Junction/physiology , Animals , Cells, Cultured , Glial Cell Line-Derived Neurotrophic Factor/genetics , Mice , Mice, Knockout , Muscle, Skeletal/physiology
17.
Neurodegener Dis ; 16(3-4): 127-39, 2016.
Article in English | MEDLINE | ID: mdl-26517704

ABSTRACT

The behavioral variant of frontotemporal dementia (bvFTD) is a neurodegenerative disease affecting people in their early sixties, characterized by dramatic changes in individual and social behavior. Despite the heterogeneity in the presentation of the clinical symptoms of bvFTD, some characteristic changes can be highlighted. Social disinhibition, changes in food preferences as well as loss of empathy and apathy are commonly described. This is accompanied by a characteristic and dramatic atrophy of the prefrontal cortex with the accumulation of protein aggregates in the neurons in this area. Several causative mutations in different genes have been discovered, allowing the development of transgenic animal models, especially mouse models. In mice, attention has been focused on the histopathological aspects of the pathology, but now studies are taking interest in assessing the behavioral phenotype of FTD models. Finding the right test corresponding to human symptoms is quite challenging, especially since the frontal cortex is much less developed in mice than in humans. Although challenging, the ability to detect relevant prefrontal cortex impairments in mice is crucial for therapeutic approaches. In this review, we aim to present the approaches that have been used to model the behavioral symptoms of FTD and to explore other relevant approaches to assess behavior involving the prefrontal cortex, as well as the deficits associated with FTD.


Subject(s)
Behavior, Animal , Disease Models, Animal , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/psychology , Psychological Tests , Animals , Frontotemporal Dementia/physiopathology , Humans , Mice , Phenotype
18.
Article in English | MEDLINE | ID: mdl-26083872

ABSTRACT

Amyotrophic lateral sclerosis is sporadic (SALS) in 90% of cases and has complex environmental and genetic influences. Nogo protein inhibits neurite outgrowth and is overexpressed in muscle in ALS. Our aims were to study the reticulon 4 receptor gene RTN4R which encodes Nogo 1 receptor (NgR1) in SALS, to test if the variants were associated with variable expression of the gene and whether NgR1 protein expression was modified in a transgenic mouse model of ALS. We genotyped three single nucleotide polymorphisms (SNPs; rs701421, rs701427, and rs1567871) of the RTN4R gene in 364 SALS French patients and 430 controls. We examined expression of RTN4R mRNA by quantitative PCR in control post mortem human brain tissue. We determined the expression of NgR1 protein in spinal motor neurons from a SOD1 G86R ALS mouse model. We observed significant associations between SALS and RTN4R alleles. Messenger RNA expression from RTN4R in human cortical brain tissue correlated significantly with the genotypes of rs701427. NgR1 protein expression was reduced in Nogo A positive motor neurons from diseased transgenic animals. In conclusion, these observations suggest that a functional RTN4R gene variant is associated with SALS. This variant may act in concert with other genetic variants or environmental influences.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Brain/metabolism , Motor Neurons/metabolism , Myelin Proteins/genetics , RNA, Messenger/metabolism , Receptors, Cell Surface/genetics , Spinal Cord/metabolism , White People/genetics , Adult , Aged , Aged, 80 and over , Alleles , Animals , Case-Control Studies , Disease Models, Animal , Female , France , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Humans , Immunohistochemistry , Male , Mice , Mice, Transgenic , Middle Aged , Myelin Proteins/metabolism , Nogo Receptor 1 , Polymorphism, Single Nucleotide , Receptors, Cell Surface/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Spinal Cord/cytology , Superoxide Dismutase/genetics , Superoxide Dismutase-1
19.
EMBO Mol Med ; 7(5): 526-46, 2015 May.
Article in English | MEDLINE | ID: mdl-25820275

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is the most common fatal motor neuron disease in adults. Numerous studies indicate that ALS is a systemic disease that affects whole body physiology and metabolic homeostasis. Using a mouse model of the disease (SOD1(G86R)), we investigated muscle physiology and motor behavior with respect to muscle metabolic capacity. We found that at 65 days of age, an age described as asymptomatic, SOD1(G86R) mice presented with improved endurance capacity associated with an early inhibition in the capacity for glycolytic muscle to use glucose as a source of energy and a switch in fuel preference toward lipids. Indeed, in glycolytic muscles we showed progressive induction of pyruvate dehydrogenase kinase 4 expression. Phosphofructokinase 1 was inhibited, and the expression of lipid handling molecules was increased. This mechanism represents a chronic pathologic alteration in muscle metabolism that is exacerbated with disease progression. Further, inhibition of pyruvate dehydrogenase kinase 4 activity with dichloroacetate delayed symptom onset while improving mitochondrial dysfunction and ameliorating muscle denervation. In this study, we provide the first molecular basis for the particular sensitivity of glycolytic muscles to ALS pathology.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Glycolysis , Lipid Metabolism , Muscles/physiology , Animals , Disease Models, Animal , Mice , Muscles/metabolism
20.
Neurobiol Dis ; 58: 220-30, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23742762

ABSTRACT

Mutations in the DYNC1H1 gene encoding for dynein heavy chain cause two closely related human motor neuropathies, dominant spinal muscular atrophy with lower extremity predominance (SMA-LED) and axonal Charcot-Marie-Tooth (CMT) disease, and lead to sensory neuropathy and striatal atrophy in mutant mice. Dynein is the molecular motor carrying mitochondria retrogradely on microtubules, yet the consequences of dynein mutations on mitochondrial physiology have not been explored. Here, we show that mouse fibroblasts bearing heterozygous or homozygous point mutation in Dync1h1, similar to human mutations, show profoundly abnormal mitochondrial morphology associated with the loss of mitofusin 1. Furthermore, heterozygous Dync1h1 mutant mice display progressive mitochondrial dysfunction in muscle and mitochondria progressively increase in size and invade sarcomeres. As a likely consequence of systemic mitochondrial dysfunction, Dync1h1 mutant mice develop hyperinsulinemia and hyperglycemia and progress to glucose intolerance with age. Similar defects in mitochondrial morphology and mitofusin levels are observed in fibroblasts from patients with SMA-LED. Last, we show that Dync1h1 mutant fibroblasts show impaired perinuclear clustering of mitochondria in response to mitochondrial uncoupling. Our results show that dynein function is required for the maintenance of mitochondrial morphology and function with aging and suggest that mitochondrial dysfunction contributes to dynein-dependent neurological diseases, such as SMA-LED.


Subject(s)
Aging/pathology , Cytoplasmic Dyneins/genetics , Mitochondria/pathology , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/pathology , Mutation/genetics , Animals , Cells, Cultured , Embryo, Mammalian , Female , Glucagon/blood , Glutamic Acid/genetics , Humans , Insulin/blood , Lysine/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/ultrastructure , Superoxide Dismutase/metabolism , Superoxide Dismutase-1 , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...