Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Nature ; 628(8009): 863-871, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570687

ABSTRACT

Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-ß-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.


Subject(s)
Brain , Neovascularization, Physiologic , Animals , Basement Membrane/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/cytology , Brain/cytology , Brain/blood supply , Brain/metabolism , Cell Movement , Collagen Type IV/metabolism , CRISPR-Cas Systems/genetics , Endothelial Cells/metabolism , Endothelial Cells/cytology , Meninges/cytology , Meninges/blood supply , Meninges/metabolism , Organ Specificity , Wnt Proteins/metabolism , Wnt Signaling Pathway , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
2.
ACS Omega ; 9(6): 6505-6526, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38371826

ABSTRACT

Equine atypical myopathy (AM) is a severe environmental intoxication linked to the ingestion of protoxins contained in seeds and seedlings of the sycamore maple (Acer pseudoplatanus) in Europe. The toxic metabolites cause a frequently fatal rhabdomyolysis syndrome in grazing horses. Since these toxic metabolites can also be present in cograzing horses, it is still unclear as to why, in a similar environmental context, some horses show signs of AM, whereas others remain clinically healthy. Label-free proteomic analyses on the serum of 26 diseased AM, 23 cograzers, and 11 control horses were performed to provide insights into biological processes and pathways. A total of 43 and 44 differentially abundant proteins between "AM vs cograzing horses" and "AM vs control horses" were found. Disease-linked changes in the proteome of different groups were found to correlate with detected amounts of toxins, and principal component analyses were performed to identify the 29 proteins representing a robust AM signature. Among the pathway-specific changes, the glycolysis/gluconeogenesis pathway, the coagulation/complement cascade, and the biosynthesis of amino acids were affected. Sycamore maple poisoning results in a combination of inflammation, oxidative stress, and impaired lipid metabolism, which is trying to be counteracted by enhanced glycolysis.

3.
J Biol Chem ; 299(10): 105207, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37660909

ABSTRACT

Chemotaxis is a widespread strategy used by unicellular and multicellular living organisms to maintain their fitness in stressful environments. We previously showed that bacteria can trigger a negative chemotactic response to a copper (Cu)-rich environment. Cu ion toxicity on bacterial cell physiology has been mainly linked to mismetallation events and reactive oxygen species (ROS) production, although the precise role of Cu-generated ROS remains largely debated. Here, using inductively coupled plasma optical emission spectrometry on cell fractionates, we found that the cytoplasmic Cu ion content mirrors variations of the extracellular Cu ion concentration. ROS-sensitive fluorescent probe and biosensor allowed us to show that the increase of cytoplasmic Cu ion content triggers a dose-dependent oxidative stress, which can be abrogated by superoxide dismutase and catalase overexpression. The inhibition of ROS production in the cytoplasm not only improves bacterial growth but also impedes Cu chemotaxis, indicating that ROS derived from cytoplasmic Cu ions mediate the control of bacterial chemotaxis to Cu. We also identified the Cu chemoreceptor McpR, which binds Cu ions with low affinity, suggesting a labile interaction. In addition, we demonstrate that the cysteine 75 and histidine 99 within the McpR sensor domain are key residues in Cu chemotaxis and Cu coordination. Finally, we discovered that in vitro both Cu(I) and Cu(II) ions modulate McpR conformation in a distinct manner. Overall, our study provides mechanistic insights on a redox-based control of Cu chemotaxis, indicating that the cellular redox status can play a key role in bacterial chemotaxis.

4.
Int J Mol Sci ; 24(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37569553

ABSTRACT

The study of the mechanisms underlying stem cell differentiation is under intensive research and includes the contribution of a metabolic switch from glycolytic to oxidative metabolism. While mitochondrial biogenesis has been previously demonstrated in number of differentiation models, it is only recently that the role of mitochondrial dynamics has started to be explored. The discovery of asymmetric distribution of mitochondria in stem cell progeny has strengthened the interest in the field. This review attempts to summarize the regulation of mitochondrial asymmetric apportioning by the mitochondrial fusion, fission, and mitophagy processes as well as emphasize how asymmetric mitochondrial apportioning in stem cells affects their metabolism, and thus epigenetics, and determines cell fate.


Subject(s)
Adult Stem Cells , Mitochondria , Cell Differentiation/physiology , Mitochondria/metabolism , Stem Cells/metabolism , Adult Stem Cells/metabolism , Glycolysis , Mitochondrial Dynamics
5.
Elife ; 122023 07 10.
Article in English | MEDLINE | ID: mdl-37428012

ABSTRACT

Using embryonic stem cells (ESCs) in regenerative medicine or in disease modeling requires a complete understanding of these cells. Two main distinct developmental states of ESCs have been stabilized in vitro, a naïve pre-implantation stage and a primed post-implantation stage. Based on two recently published CRISPR-Cas9 knockout functional screens, we show here that the exit of the naïve state is impaired upon heme biosynthesis pathway blockade, linked in mESCs to the incapacity to activate MAPK- and TGFß-dependent signaling pathways after succinate accumulation. In addition, heme synthesis inhibition promotes the acquisition of 2 cell-like cells in a heme-independent manner caused by a mitochondrial succinate accumulation and leakage out of the cell. We further demonstrate that extracellular succinate acts as a paracrine/autocrine signal, able to trigger the 2C-like reprogramming through the activation of its plasma membrane receptor, SUCNR1. Overall, this study unveils a new mechanism underlying the maintenance of pluripotency under the control of heme synthesis.


Subject(s)
Embryonic Stem Cells , Succinic Acid , Cell Differentiation , Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells , Succinic Acid/metabolism , Animals , Mice
6.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37298552

ABSTRACT

Biotin-based proximity labeling approaches, such as BioID, have demonstrated their use for the study of mitochondria proteomes in living cells. The use of genetically engineered BioID cell lines enables the detailed characterization of poorly characterized processes such as mitochondrial co-translational import. In this process, translation is coupled to the translocation of the mitochondrial proteins, alleviating the energy cost typically associated with the post-translational import relying on chaperone systems. However, the mechanisms are still unclear with only few actors identified but none that have been described in mammals yet. We thus profiled the TOM20 proxisome using BioID, assuming that some of the identified proteins could be molecular actors of the co-translational import in human cells. The obtained results showed a high enrichment of RNA binding proteins close to the TOM complex. However, for the few selected candidates, we could not demonstrate a role in the mitochondrial co-translational import process. Nonetheless, we were able to demonstrate additional uses of our BioID cell line. Indeed, the experimental approach used in this study is thus proposed for the identification of mitochondrial co-translational import effectors and for the monitoring of protein entry inside mitochondria with a potential application in the prediction of mitochondrial protein half-life.


Subject(s)
Mitochondrial Membranes , Mitochondrial Proteins , Animals , Humans , Mammals/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
7.
EMBO J ; 42(14): e112817, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37232029

ABSTRACT

The facultative intracellular pathogen Brucella abortus interacts with several organelles of the host cell to reach its replicative niche inside the endoplasmic reticulum. However, little is known about the interplay between the intracellular bacteria and the host cell mitochondria. Here, we showed that B. abortus triggers substantive mitochondrial network fragmentation, accompanied by mitophagy and the formation of mitochondrial Brucella-containing vacuoles during the late steps of cellular infection. Brucella-induced expression of the mitophagy receptor BNIP3L is essential for these events and relies on the iron-dependent stabilisation of the hypoxia-inducible factor 1α. Functionally, BNIP3L-mediated mitophagy appears to be advantageous for bacterial exit from the host cell as BNIP3L depletion drastically reduces the number of reinfection events. Altogether, these findings highlight the intricate link between Brucella trafficking and the mitochondria during host cell infection.


Subject(s)
Brucella abortus , Mitophagy , Brucella abortus/metabolism , Vacuoles/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria
8.
Stem Cell Reports ; 18(1): 254-268, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36563686

ABSTRACT

Translational regulation is of paramount importance for proteome remodeling during stem cell differentiation at both the global and the transcript-specific levels. In this study, we characterized translational remodeling during hepatogenic differentiation of induced pluripotent stem cells (iPSCs) by polysome profiling. We demonstrate that protein synthesis increases during exit from pluripotency and is then globally repressed during later steps of hepatogenic maturation. This global downregulation of translation is accompanied by a decrease in the abundance of protein components of the translation machinery, which involves a global reduction in translational efficiency of terminal oligopyrimidine tract (TOP) mRNA encoding translation-related factors. Despite global translational repression during hepatogenic differentiation, key hepatogenic genes remain efficiently translated, and the translation of several transcripts involved in hepatospecific functions and metabolic maturation is even induced. We conclude that, during hepatogenic differentiation, a global decrease in protein synthesis is accompanied by a specific translational rewiring of hepatospecific transcripts.


Subject(s)
Carrier Proteins , Protein Biosynthesis , Down-Regulation/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cell Differentiation/genetics , Carrier Proteins/genetics
9.
Stem Cell Rev Rep ; 19(2): 550-567, 2023 02.
Article in English | MEDLINE | ID: mdl-36271312

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a highly prevalent joint degenerative disease for which therapeutic treatments are limited or invasive. Cell therapy based on mesenchymal stem/stromal cells (MSCs) is therefore seen as a promising approach for this disease, in both human and horses. As the regenerative potential of MSCs is mainly conferred by paracrine function, the goal of this study was to characterize the secreted proteins of muscle-derived MSCs (mdMSCs) in an in vitro model of OA to evaluate the putative clinical interest of mdMSCs as cell therapy for joint diseases like osteoarthritis. METHODS: An equine osteoarthritis model composed of cartilage explants exposed to pro-inflammatory cytokines was first developed. Then, the effects of mdMSC co-culture on cartilage explant were studied by measuring the glycosaminoglycan release and the NO2- production. To identify the underlying molecular actors, stable isotope-labeling by amino acids in cell culture based secreted protein analyses were conducted, in the presence of serum. The relative abundance of highly sequenced proteins was finally confirmed by western blot. RESULTS: Co-culture with muscle-derived MSCs decreases the cytokine-induced glycosaminoglycan release by cartilage explants, suggesting a protecting effect of mdMSCs. Among the 52 equine proteins sequenced in the co-culture conditioned medium, the abundance of decorin and matrix metalloproteinase 3 was significantly modified, as confirmed by western blot analyses. CONCLUSIONS: These results suggest that muscle-derived MSCs could reduce the catabolic effect of TNFα and IL-1ß on cartilage explant by decreasing the secretion and activity of matrix metalloproteinase 3 and increasing the decorin secretion. mdMSCs capacity to reduce the catabolic consequences of cartilage exposure to pro-inflammatory cytokines. These effects can be explained by mdMSC-secreted bioactive such as TIMP-1 and decorin, known as an inhibitor of MMP3 and an anti-inflammatory protein, respectively.


Subject(s)
Mesenchymal Stem Cells , Osteoarthritis , Animals , Cartilage/metabolism , Chondrocytes , Cytokines/metabolism , Decorin/metabolism , Decorin/pharmacology , Glycosaminoglycans/metabolism , Horses , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/pharmacology , Muscles/metabolism , Osteoarthritis/therapy , Osteoarthritis/veterinary
10.
Metabolites ; 12(7)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35888775

ABSTRACT

Pluripotent cells have been stabilized from pre- and post-implantation blastocysts, representing respectively naïve and primed stages of embryonic stem cells (ESCs) with distinct epigenetic, metabolic and transcriptomic features. Beside these two well characterized pluripotent stages, several intermediate states have been reported, as well as a small subpopulation of cells that have reacquired features of the 2C-embryo (2C-like cells) in naïve mouse ESC culture. Altogether, these represent a continuum of distinct pluripotency stages, characterized by metabolic transitions, for which we propose a new role for a long-known metabolite: succinate. Mostly seen as the metabolite of the TCA, succinate is also at the crossroad of several mitochondrial biochemical pathways. Its role also extends far beyond the mitochondrion, as it can be secreted, modify proteins by lysine succinylation and inhibit the activity of alpha-ketoglutarate-dependent dioxygenases, such as prolyl hydroxylase (PHDs) or histone and DNA demethylases. When released in the extracellular compartment, succinate can trigger several key transduction pathways after binding to SUCNR1, a G-Protein Coupled Receptor. In this review, we highlight the different intra- and extracellular roles that succinate might play in the fields of early pluripotency and embryo development.

11.
Front Immunol ; 13: 831695, 2022.
Article in English | MEDLINE | ID: mdl-35371105

ABSTRACT

Following acute HCV infection, the virus establishes a chronic disease in the majority of patients whilst few individuals clear the infection spontaneously. The precise mechanisms that determine chronic HCV infection or spontaneous clearance are not completely understood but are proposed to be driven by host and viral genetic factors as well as HCV encoded immunomodulatory proteins. Using the HIV-1 LTR as a tool to measure NF-κB activity, we identified that the HCV E1E2 glycoproteins and more so the E2 protein down-modulates HIV-1 LTR activation in 293T, TZM-bl and the more physiologically relevant Huh7 liver derived cell line. We demonstrate this effect is specifically mediated through inhibiting NF-κB binding to the LTR and show that this effect was conserved for all HCV genotypes tested. Transcriptomic analysis of 293T cells expressing the HCV glycoproteins identified E1E2 mediated stimulation of the endoplasmic reticulum (ER) stress response pathway and upregulation of stress response genes such as ATF3. Through shRNA mediated inhibition of ATF3, one of the components, we observed that E1E2 mediated inhibitory effects on HIV-1 LTR activity was alleviated. Our in vitro studies demonstrate that HCV Env glycoprotein activates host ER Stress Pathways known to inhibit NF-κB activity. This has potential implications for understanding HCV induced immune activation as well as oncogenesis.


Subject(s)
Hepatitis C , NF-kappa B , Endoplasmic Reticulum Stress , Glycoproteins , Humans , NF-kappa B/metabolism , Signal Transduction
12.
J Cell Mol Med ; 25(10): 4877-4881, 2021 05.
Article in English | MEDLINE | ID: mdl-33769687

ABSTRACT

Mesenchymal stem cells are increasingly studied for their use as drug-carrier in addition to their intrinsic potential for regenerative medicine. They could be used to transport molecules with a poor bioavailability such as curcumin in order to improve their clinical usage. This natural polyphenol, well-known for its antioxidant and anti-inflammatory properties, has a poor solubility that limits its clinical potential. For this purpose, the use of NDS27, a curcumin salt complexed with hydroxypropyl-beta-cyclodextrin (HPßCD), displaying an increased solubility in aqueous solution, is preferred. This study aims to evaluate the uptake of NDS27 into skeletal muscle-derived mesenchymal stem cells (mdMSCs) and the effects of such uptake onto their mesenchymal properties. It appeared that the uptake of NDS27 into mdMSCs is concentration-dependent and not time-dependent. The use of a concentration of 7 µmol/L which does not affect the viability and proliferation also allows preservation of their adhesion, invasion and T cell immunomodulatory abilities.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Differentiation , Curcumin/pharmacology , Mesenchymal Stem Cells/cytology , Muscle, Skeletal/cytology , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cell- and Tissue-Based Therapy , Cells, Cultured , Curcumin/chemistry , Drug Carriers/chemistry , Horses , Mesenchymal Stem Cells/drug effects , Muscle, Skeletal/drug effects
13.
Nat Microbiol ; 6(1): 27-33, 2021 01.
Article in English | MEDLINE | ID: mdl-33139884

ABSTRACT

Gram-negative bacteria are surrounded by a cell envelope that comprises an outer membrane (OM) and an inner membrane that, together, delimit the periplasmic space, which contains the peptidoglycan (PG) sacculus. Covalent anchoring of the OM to the PG is crucial for envelope integrity in Escherichia coli. When the OM is not attached to the PG, the OM forms blebs and detaches from the cell. The Braun lipoprotein Lpp1 covalently attaches OM to the PG but is present in only a small number of γ-proteobacteria; the mechanism of OM-PG attachment in other species is unclear. Here, we report that the OM is attached to PG by covalent cross-links between the N termini of integral OM ß-barrel-shaped proteins (OMPs) and the peptide stems of PG in the α-proteobacteria Brucella abortus and Agrobacterium tumefaciens. Cross-linking is catalysed by L,D-transpeptidases and attached OMPs have a conserved alanyl-aspartyl motif at their N terminus. Mutation of the aspartate in this motif prevents OMP cross-linking and results in OM membrane instability. The alanyl-aspartyl motif is conserved in OMPs from Rhizobiales; it is therefore feasible that OMP-PG cross-links are widespread in α-proteobacteria.


Subject(s)
Agrobacterium tumefaciens/metabolism , Bacterial Outer Membrane Proteins/metabolism , Brucella abortus/metabolism , Peptidoglycan/metabolism , Bacterial Outer Membrane Proteins/genetics , Cell Membrane/metabolism , Cell Wall/metabolism , Lipoproteins/metabolism , Peptidyl Transferases/metabolism , Protein Binding/physiology
14.
Placenta ; 101: 159-162, 2020 11.
Article in English | MEDLINE | ID: mdl-32992125

ABSTRACT

The placenta can be regarded as a mirror of the events to which the fetus is exposed during development. The placental proteome has been studied with several methodologies differing in sample handling, protein extraction, and processing. We optimized a protocol to analyze the placental proteome by means of label-free nano-LC-MS/MS mass spectrometry with regard to sample treatment, protein extraction, and protein digestion, in order to obtain a high protein concentration for identification of a specific protein signature according to the conditions studied. We recommend mechanical tissue disruption, blood removal prior to protein extraction, and FASP-based or in-gel digestion.


Subject(s)
Placenta/chemistry , Proteome , Proteomics/methods , Chromatography, Liquid , Female , Humans , Mass Spectrometry , Pregnancy
15.
PLoS One ; 15(3): e0229834, 2020.
Article in English | MEDLINE | ID: mdl-32155188

ABSTRACT

MPV17 is described as a mitochondrial inner membrane channel. Although its function remains elusive, mutations in the MPV17 gene result in hepato-cerebral mitochondrial DNA depletion syndrome in humans. In this study, we show that MPV17 silencing does not induce depletion in mitochondrial DNA content in cancer cells. We also show that MPV17 does not control cancer cell proliferation despite the fact that we initially observed a reduced proliferation rate in five MPV17-silenced cancer cell lines with two different shRNAs. However, shRNA-mediated MPV17 knockdown performed in this work provided misguiding results regarding the resulting proliferation phenotype and only a rescue experiment was able to shed definitive light on the implication of MPV17 in cancer cell proliferation. Our results therefore emphasize the caution that is required when scientific conclusions are drawn from a work based on lentiviral vector-based gene silencing and clearly demonstrate the need to systematically perform a rescue experiment in order to ascertain the specific nature of the experimental results.


Subject(s)
Membrane Proteins/physiology , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/physiology , Neoplasms/pathology , Cell Proliferation , DNA, Mitochondrial/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Membrane Proteins/genetics , Mitochondrial Proteins/genetics
16.
Biochem Pharmacol ; 169: 113621, 2019 11.
Article in English | MEDLINE | ID: mdl-31472127

ABSTRACT

Cell differentiation is a fundamental biological event in which a precursor stem cell is turning into a specialized somatic cell. It is thus crucial for the development, tissue turnover and regeneration in mammals. Among the numerous changes taking place in a cell during a differentiation programme, the biology of mitochondria, the central organelle mainly responsible for energy homeostasis and stress adaptation, is deeply modified. These modifications are now well recognized as taking an active part to the completion of the differentiation programme. Indeed, mitochondrial biogenesis and metabolic shift are observed during cell differentiation, adapting many syntheses, calcium homeostasis, ATP and reactive oxygen species production, to the needs. These mitochondrial functions are substantially regulated by the post-translational modifications of the mitochondrial proteins among which lysine acetylation is essential. This mitoacetylome is then globally controlled by the balance between spontaneous/enzymatically-catalysed protein acetylation and the NAD+-dependent deacetylation mediated by Sirtuin 3. This enzyme is now considered as a major regulator of the function of the organelle. Regarding the requirement of these mitochondrial adaptations, the subsequent growing interest for this enzyme recently extended to the investigation of the mechanisms driving cell differentiation. This review summarizes the currently available information about the significance of SIRT3 in cell differentiation in physio-pathological contexts. We also suggest a control of the differentiation-activated autophagy by SIRT3, a hypothesis supported by recent findings establishing a causal link between SIRT3 and autophagy. Eventually, an update on the present pharmacological modulators of SIRT3 in a context of cell differentiation is discussed.


Subject(s)
Cell Differentiation , Sirtuin 3/physiology , Acetylation , Adipogenesis , Animals , Autophagy , Carcinogenesis , Humans , Mitochondria/physiology , Mitochondrial Proteins/metabolism , Muscle Development , Protein Processing, Post-Translational
17.
Cells ; 8(8)2019 07 30.
Article in English | MEDLINE | ID: mdl-31366145

ABSTRACT

Mitochondrial uncoupling can be defined as a dissociation between mitochondrial membrane potential generation and its use for mitochondria-dependent ATP synthesis. Although this process was originally considered a mitochondrial dysfunction, the identification of UCP-1 as an endogenous physiological uncoupling protein suggests that the process could be involved in many other biological processes. In this review, we first compare the mitochondrial uncoupling agents available in term of mechanistic and non-specific effects. Proteins regulating mitochondrial uncoupling, as well as chemical compounds with uncoupling properties are discussed. Second, we summarize the most recent findings linking mitochondrial uncoupling and other cellular or biological processes, such as bulk and specific autophagy, reactive oxygen species production, protein secretion, cell death, physical exercise, metabolic adaptations in adipose tissue, and cell signaling. Finally, we show how mitochondrial uncoupling could be used to treat several human diseases, such as obesity, cardiovascular diseases, or neurological disorders.


Subject(s)
Mitochondria/metabolism , Mitochondrial Uncoupling Proteins/metabolism , Uncoupling Agents/pharmacology , Animals , Autophagy , Humans , Mitochondria/drug effects , Oxidative Phosphorylation , Reactive Oxygen Species/metabolism , Signal Transduction
18.
Animals (Basel) ; 9(5)2019 May 07.
Article in English | MEDLINE | ID: mdl-31067722

ABSTRACT

Insect protein has the potential to become a sustainable feed ingredient for the rapidly growing aquaculture industry. In the European Union, insect derived protein is placed under the same legislation as processed animal proteins (PAP). It is therefore of interest to develop methods for regulatory use, which unambiguously identify the species origin of insect-based ingredients. We performed (i) total protein quantification of insect samples using the traditional nitrogen-to-protein conversion factor of 6.25 and the sum of anhydrous amino acids, (ii) quantitative amino acid profiling and (iii) high-throughput tandem mass spectrometry to describe and differentiate 18 different commercial-grade insect meal samples derived from Hermetia illucens (8), Tenebrio molitor (5), Alphitobius diaperinus (3) and Acheta domesticus (2). In addition, we investigated and compared different protein extraction and digestion protocols for proteomic analysis. We found that irrespective of sample preparation, shotgun proteomics in combination with direct spectral comparison were able to differentiate insect meal according to their taxonomic classification. The insect specific spectral libraries created in the present work can in future be used to develop more sensitive targeted methods of insect PAP identification and quantification in commercial feed mixtures.

19.
Sci Rep ; 8(1): 5173, 2018 03 26.
Article in English | MEDLINE | ID: mdl-29581535

ABSTRACT

Mitochondria are complex organelles that participate in many cellular functions, ranging from ATP production to immune responses against viruses and bacteria. This integration of a plethora of functions within a single organelle makes mitochondria a very attractive target to manipulate for intracellular pathogens. We characterised the crosstalk that exists between Brucella abortus, the causative agent of brucellosis, and the mitochondria of infected cells. Brucella replicates in a compartment derived from the endoplasmic reticulum (ER) and modulates ER functionality by activating the unfolded protein response. However, the impact of Brucella on the mitochondrial population of infected cells still requires a systematic study. We observed physical contacts between Brucella containing vacuoles and mitochondria. We also found that B. abortus replication is independent of mitochondrial oxidative phosphorylation and that mitochondrial reactive oxygen species do not participate to the control of B. abortus infection in vitro. We demonstrated that B. abortus and B. melitensis induce a drastic mitochondrial fragmentation at 48 hours post-infection in different cell types, including myeloid and non-myeloid cells. This fragmentation is DRP1-independent and might be caused by a deficit of mitochondrial fusion. However, mitochondrial fragmentation does not change neither Brucella replication efficiency, nor the susceptibility of infected cells to TNFα-induced apoptosis.


Subject(s)
Brucella abortus/genetics , Brucellosis/genetics , Dynamins/genetics , Tumor Necrosis Factor-alpha/genetics , Animals , Apoptosis/genetics , Brucella abortus/pathogenicity , Brucellosis/microbiology , Brucellosis/pathology , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/microbiology , Humans , Macrophages/metabolism , Macrophages/pathology , Mice , Mitochondria/genetics , Mitochondria/microbiology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Unfolded Protein Response/genetics , Vacuoles/genetics
20.
J Cell Physiol ; 233(2): 1247-1265, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28488768

ABSTRACT

Obesity is characterized by an excessive triacylglycerol accumulation in white adipocytes. Various mechanisms allowing the tight regulation of triacylglycerol storage and mobilization by lipid droplet-associated proteins as well as lipolytic enzymes have been identified. Increasing energy expenditure by inducing a mild uncoupling of mitochondria in adipocytes might represent a putative interesting anti-obesity strategy as it reduces the adipose tissue triacylglycerol content (limiting alterations caused by cell hypertrophy) by stimulating lipolysis through yet unknown mechanisms, limiting the adverse effects of adipocyte hypertrophy. Herein, the molecular mechanisms involved in lipolysis induced by a mild uncoupling of mitochondria in white 3T3-L1 adipocytes were characterized. Mitochondrial uncoupling-induced lipolysis was found to be independent from canonical pathways that involve lipolytic enzymes such as HSL and ATGL. Finally, enhanced lipolysis in response to mitochondrial uncoupling relies on a form of autophagy as lipid droplets are captured by endolysosomal vesicles. This new mechanism of triacylglycerol breakdown in adipocytes exposed to mild uncoupling provides new insights on the biology of adipocytes dealing with mitochondria forced to dissipate energy.


Subject(s)
Adipocytes/drug effects , Autophagy/drug effects , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/pharmacology , Lipase/metabolism , Lipolysis/drug effects , Mitochondria/drug effects , Sterol Esterase/metabolism , Triglycerides/metabolism , Uncoupling Agents/pharmacology , 3T3-L1 Cells , Adipocytes/metabolism , Adipocytes/ultrastructure , Animals , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Lipid Droplets/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Macrolides/pharmacology , Mice , Mitochondria/metabolism , Mitochondria/ultrastructure , RNA Interference , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...