Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Neuroscience ; 550: 69-78, 2024 07 09.
Article in English | MEDLINE | ID: mdl-38763225

ABSTRACT

Despite recent advances in acute stroke management, most patients experiencing a stroke will suffer from residual brain damage and functional impairment. Addressing those residual deficits would require neurorestoration, i.e., rebuilding brain tissue to repair the structural brain damage caused by stroke. However, there are major pathobiological, anatomical and technological hurdles making neurorestorative approaches remarkably challenging, and true neurorestoration after larger ischemic lesions could not yet be achieved. On the other hand, there has been steady advancement in our understanding of the limits of tissue regeneration in the adult mammalian brain as well as of the fundamental organization of brain tissue growth during embryo- and ontogenesis. This has been paralleled by the development of novel animal models to study stroke, advancement of biomaterials that can be used to support neurorestoration, and in stem cell technologies. This review gives a detailed explanation of the major hurdles so far preventing the achievement of neurorestoration after stroke. It will also describe novel concepts and advancements in biomaterial science, brain organoid culturing, and animal modeling that may enable the investigation of post-stroke neurorestorative approaches in translationally relevant setups. Finally, there will be a review of recent achievements in experimental studies that have the potential to be the starting point of research and development activities that may eventually bring post-stroke neurorestoration within reach.


Subject(s)
Stroke , Animals , Humans , Stroke/therapy , Stroke/physiopathology , Brain/growth & development , Brain/physiology , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL