Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(18): eadn5861, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701218

ABSTRACT

Enzymes of the ten-eleven translocation (TET) family play a key role in the regulation of gene expression by oxidizing 5-methylcytosine (5mC), a prominent epigenetic mark in many species. Yet, TET proteins also have less characterized noncanonical modes of action, notably in Drosophila, whose genome is devoid of 5mC. Here, we show that Drosophila TET activates the expression of genes required for larval central nervous system (CNS) development mainly in a catalytic-independent manner. Genome-wide profiling shows that TET is recruited to enhancer and promoter regions bound by Polycomb group complex (PcG) proteins. We found that TET interacts and colocalizes on chromatin preferentially with Polycomb repressor complex 1 (PRC1) rather than PRC2. Furthermore, PRC1 but not PRC2 is required for the activation of TET target genes. Last, our results suggest that TET and PRC1 binding to activated genes is interdependent. These data highlight the importance of TET noncatalytic function and the role of PRC1 for gene activation in the Drosophila larval CNS.


Subject(s)
Drosophila Proteins , Polycomb Repressive Complex 1 , Animals , Central Nervous System/metabolism , Chromatin/metabolism , Chromatin/genetics , Drosophila/metabolism , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Gene Expression Regulation , Gene Expression Regulation, Developmental , Larva/metabolism , Larva/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/genetics , Promoter Regions, Genetic , Protein Binding
2.
Elife ; 122023 Dec 21.
Article in English | MEDLINE | ID: mdl-38126351

ABSTRACT

N6-methyladenine (6mA) DNA modification has recently been described in metazoans, including in Drosophila, for which the erasure of this epigenetic mark has been ascribed to the ten-eleven translocation (TET) enzyme. Here, we re-evaluated 6mA presence and TET impact on the Drosophila genome. Using axenic or conventional breeding conditions, we found traces of 6mA by LC-MS/MS and no significant increase in 6mA levels in the absence of TET, suggesting that this modification is present at very low levels in the Drosophila genome but not regulated by TET. Consistent with this latter hypothesis, further molecular and genetic analyses showed that TET does not demethylate 6mA but acts essentially in an enzymatic-independent manner. Our results call for further caution concerning the role and regulation of 6mA DNA modification in metazoans and underline the importance of TET non-enzymatic activity for fly development.


Subject(s)
Adenine , DNA Methylation , Drosophila Proteins , Drosophila , Animals , Chromatography, Liquid , DNA/genetics , Drosophila/genetics , Tandem Mass Spectrometry
3.
Oncogene ; 42(38): 2854-2867, 2023 09.
Article in English | MEDLINE | ID: mdl-37587334

ABSTRACT

Increasing evidence points towards a causal link between exposure to persistent organic pollutants (POPs) with increased incidence and aggressivity of various cancers. Among these POPs, dioxin and PCB-153 are widely found in our environment and represent a significant source of contamination. Dioxin exposure has already been linked to cancer such as non-Hodgkin's lymphoma, but remains to be more extensively investigated in other cancers. Potential implications of dioxin and PCB-153 in prostate cancer progression spurred us to challenge both ex vivo and in vivo models with low doses of these POPs. We found that dioxin or PCB-153 exposure increased hallmarks of growth and metastasis of prostate cancer cells ex vivo and in grafted NOD-SCID mice. Exposure induced histopathological carcinoma-like patterns in the Ptenpc-/- mice. We identified up-regulation of Acetyl-CoA Acetyltransferase-1 (ACAT1) involved in ketone bodies pathway as a potential target. Mechanistically, genetic inhibition confirmed that ACAT1 mediated dioxin effect on cell migration. Using public prostate cancer datasets, we confirmed the deregulation of ACAT1 and associated gene encoded ketone bodies pathway enzymes such as OXCT1, BDH1 and HMGCL in advanced prostate cancer. To further explore this link between dioxin and ACAT1 deregulation, we analyzed a unique prostate-tumour tissue collection from the USA veterans exposed to agent orange, known to be highly contaminated by dioxin because of industrial production. We found that ACAT1 histoscore is significantly increased in exposed patients. Our studies reveal the implication of dioxin and PCB-153 to induce a prometastatic programme in prostate tumours and identify ACAT1 deregulation as a key event in this process.


Subject(s)
Dioxins , Polychlorinated Dibenzodioxins , Prostatic Neoplasms , Male , Humans , Animals , Mice , Mice, Inbred NOD , Mice, SCID , Persistent Organic Pollutants , Dioxins/toxicity , Prostatic Neoplasms/chemically induced , Prostatic Neoplasms/genetics , Acetyltransferases
4.
EMBO Rep ; 24(4): e56616, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36852954

ABSTRACT

Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults. It is caused by the excessive expansion of noncoding CTG repeats, which when transcribed affects the functions of RNA-binding factors with adverse effects on alternative splicing, processing, and stability of a large set of muscular and cardiac transcripts. Among these effects, inefficient processing and down-regulation of muscle- and heart-specific miRNA, miR-1, have been reported in DM1 patients, but the impact of reduced miR-1 on DM1 pathogenesis has been unknown. Here, we use Drosophila DM1 models to explore the role of miR-1 in cardiac dysfunction in DM1. We show that miR-1 down-regulation in the heart leads to dilated cardiomyopathy (DCM), a DM1-associated phenotype. We combined in silico screening for miR-1 targets with transcriptional profiling of DM1 cardiac cells to identify miR-1 target genes with potential roles in DCM. We identify Multiplexin (Mp) as a new cardiac miR-1 target involved in DM1. Mp encodes a collagen protein involved in cardiac tube formation in Drosophila. Mp and its human ortholog Col15A1 are both highly enriched in cardiac cells of DCM-developing DM1 flies and in heart samples from DM1 patients with DCM, respectively. When overexpressed in the heart, Mp induces DCM, whereas its attenuation rescues the DCM phenotype of aged DM1 flies. Reduced levels of miR-1 and consecutive up-regulation of its target Mp/Col15A1 might be critical in DM1-associated DCM.


Subject(s)
Cardiomyopathy, Dilated , MicroRNAs , Myotonic Dystrophy , Adult , Animals , Humans , Aged , Myotonic Dystrophy/genetics , Myotonic Dystrophy/pathology , Cardiomyopathy, Dilated/genetics , Heart , MicroRNAs/genetics , MicroRNAs/metabolism , Drosophila/genetics , Drosophila/metabolism
5.
Sci Adv ; 8(41): eadd0422, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36240276

ABSTRACT

Unlike most cancers, adrenocortical carcinomas (ACCs) are more frequent in women than in men, but the underlying mechanisms of this sexual dimorphism remain elusive. Here, we show that inactivation of Znrf3 in the mouse adrenal cortex, recapitulating the most frequent alteration in ACC patients, is associated with sexually dimorphic tumor progression. Although female knockouts develop metastatic carcinomas at 18 months, adrenal hyperplasia regresses in male knockouts. This male-specific phenotype is associated with androgen-dependent induction of senescence, recruitment, and differentiation of highly phagocytic macrophages that clear out senescent cells. In contrast, in females, macrophage recruitment is delayed and dampened, which allows for aggressive tumor progression. Consistently, analysis of TCGA-ACC data shows that phagocytic macrophages are more prominent in men and are associated with better prognosis. Together, these data show that phagocytic macrophages are key players in the sexual dimorphism of ACC that could be previously unidentified allies in the fight against this devastating cancer.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , Adrenal Cortex Neoplasms/genetics , Adrenal Cortex Neoplasms/pathology , Adrenocortical Carcinoma/genetics , Adrenocortical Carcinoma/pathology , Androgens , Animals , Female , Male , Mice , Prognosis
6.
Nat Commun ; 13(1): 3550, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35729116

ABSTRACT

The epiblast is the source of all mammalian embryonic tissues and of pluripotent embryonic stem cells. It differentiates alongside the primitive endoderm in a "salt and pepper" pattern from inner cell mass (ICM) progenitors during the preimplantation stages through the activity of NANOG, GATA6 and the FGF pathway. When and how epiblast lineage specification is initiated is still unclear. Here, we show that the coordinated expression of pluripotency markers defines epiblast identity. Conversely, ICM progenitor cells display random cell-to-cell variability in expression of various pluripotency markers, remarkably dissimilar from the epiblast signature and independently from NANOG, GATA6 and FGF activities. Coordination of pluripotency markers expression fails in Nanog and Gata6 double KO (DKO) embryos. Collectively, our data suggest that NANOG triggers epiblast specification by ensuring the coordinated expression of pluripotency markers in a subset of cells, implying a stochastic mechanism. These features are likely conserved, as suggested by analysis of human embryos.


Subject(s)
Endoderm , Germ Layers , Animals , Blastocyst/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Endoderm/metabolism , Gene Expression Regulation, Developmental , Germ Layers/metabolism , Humans , Mammals/genetics , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism
7.
Adv Sci (Weinh) ; 9(17): e2200626, 2022 06.
Article in English | MEDLINE | ID: mdl-35435331

ABSTRACT

Spermatogonial stem cells regenerate and maintain spermatogenesis throughout life, making testis a good model for studying stem cell biology. The effects of chemotherapy on fertility have been well-documented previously. This study investigates how busulfan, an alkylating agent that is often used for chemotherapeutic purposes, affects male fertility. Specifically, the role of the TGR5 pathway is investigated on spermatogonia homeostasis using in vivo, in vitro, and pharmacological methods. In vivo studies are performed using wild-type and Tgr5-deficient mouse models. The results clearly show that Tgr5 deficiency can facilitate restoration of the spermatogonia homeostasis and allow faster resurgence of germ cell lineage after exposure to busulfan. TGR5 modulates the expression of key genes of undifferentiated spermatogonia such as Gfra1 and Fgfr2. At the molecular level, the present data highlight molecular mechanisms underlying the interactions among the TGR5, GLIS2, and TP53 pathways in spermatogonia associated with germ cell apoptosis following busulfan exposure. This study makes a significant contribution to the literature because it shows that TGR5 plays key role on undifferentiated germ cell homeostasis and that modulating the TGR5 signaling pathway could be used as a potential therapeutic tool for fertility disorders.


Subject(s)
Busulfan , Drug Resistance, Neoplasm , Kruppel-Like Transcription Factors , Nerve Tissue Proteins , Receptors, G-Protein-Coupled , Tumor Suppressor Protein p53 , Animals , Busulfan/metabolism , Busulfan/pharmacology , Homeostasis , Kruppel-Like Transcription Factors/genetics , Male , Mice , Nerve Tissue Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Signal Transduction , Spermatogonia/metabolism , Tumor Suppressor Protein p53/genetics
8.
Hum Mol Genet ; 31(15): 2606-2622, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35298627

ABSTRACT

Besides the consequences of retrotransposition, long interspersed element 1 (L1) retrotransposons can affect the host genome through their antisense promoter. In addition to the sense promoter, the evolutionarily recent L1 retrotransposons, which are present in several thousand copies, also possess an anti-sense promoter that can produce L1 chimeric transcripts (LCT) composed of the L1 5' UTR followed by the adjacent genomic sequence. The full extent to which LCT expression occurs in a given tissue and whether disruption of the defense mechanisms that normally control L1 retrotransposons affects their expression and function in cancer cells, remain to be established. By using CLIFinder, a dedicated bioinformatics tool, we found that LCT expression was widespread in normal brain and aggressive glioma samples, and that approximately 17% of recent L1 retrotransposons, from the L1PA1 to L1PA7 subfamilies, were involved in their production. Importantly, the transcriptional activities of the L1 antisense promoters and of their host loci were coupled. Accordingly, we detected LCT-producing L1 retrotransposons mainly in transcriptionally active genes and genomic loci. Moreover, changes in the host genomic locus expression level in glioma were associated with a similar change in LCT expression level, regardless of the L1 promoter methylation status. Our findings support a model in which the host genomic locus transcriptional activity is the main driving force of LCT expression. We hypothesize that this model is more applicable when host gene and LCT are transcribed from the same strand.


Subject(s)
Glioma , Retroelements , Brain , Glioma/genetics , Humans , Long Interspersed Nucleotide Elements/genetics , Promoter Regions, Genetic/genetics , Retroelements/genetics
9.
Front Cell Dev Biol ; 9: 739357, 2021.
Article in English | MEDLINE | ID: mdl-34722521

ABSTRACT

While many studies have described Drosophila embryonic and larval blood cells, the hematopoietic system of the imago remains poorly characterized and conflicting data have been published concerning adult hematopoiesis. Using a combination of blood cell markers, we show that the adult hematopoietic system is essentially composed of a few distinct mature blood cell types. In addition, our transcriptomics results indicate that adult and larval blood cells have both common and specific features and it appears that adult hemocytes reactivate many genes expressed in embryonic blood cells. Interestingly, we identify a small set of blood cells that does not express differentiation markers but rather maintains the expression of the progenitor marker domeMeso. Yet, we show that these cells are derived from the posterior signaling center, a specialized population of cells present in the larval lymph gland, rather than from larval blood cell progenitors, and that their maintenance depends on the EBF transcription factor Collier. Furthermore, while these cells are normally quiescent, we find that some of them can differentiate and proliferate in response to bacterial infection. In sum, our results indicate that adult flies harbor a small population of specialized cells with limited hematopoietic potential and further support the idea that no substantial hematopoiesis takes place during adulthood.

10.
Mol Cell ; 81(16): 3356-3367.e6, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34297910

ABSTRACT

RNA polymerase II (RNAP II) pausing is essential to precisely control gene expression and is critical for development of metazoans. Here, we show that the m6A RNA modification regulates promoter-proximal RNAP II pausing in Drosophila cells. The m6A methyltransferase complex (MTC) and the nuclear reader Ythdc1 are recruited to gene promoters. Depleting the m6A MTC leads to a decrease in RNAP II pause release and in Ser2P occupancy on the gene body and affects nascent RNA transcription. Tethering Mettl3 to a heterologous gene promoter is sufficient to increase RNAP II pause release, an effect that relies on its m6A catalytic domain. Collectively, our data reveal an important link between RNAP II pausing and the m6A RNA modification, thus adding another layer to m6A-mediated gene regulation.


Subject(s)
Drosophila Proteins/genetics , Multiprotein Complexes/genetics , Nuclear Proteins/genetics , RNA Polymerase II/genetics , Transcription, Genetic , Animals , Drosophila melanogaster/genetics , Methyltransferases/genetics , Promoter Regions, Genetic/genetics
11.
Sci Rep ; 11(1): 13197, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162956

ABSTRACT

A combinatorial code of identity transcription factors (iTFs) specifies the diversity of muscle types in Drosophila. We previously showed that two iTFs, Lms and Ap, play critical role in the identity of a subset of larval body wall muscles, the lateral transverse (LT) muscles. Intriguingly, a small portion of ap and lms mutants displays an increased number of LT muscles, a phenotype that recalls pathological split muscle fibers in human. However, genes acting downstream of Ap and Lms to prevent these aberrant muscle feature are not known. Here, we applied a cell type specific translational profiling (TRAP) to identify gene expression signatures underlying identity of muscle subsets including the LT muscles. We found that Gelsolin (Gel) and dCryAB, both encoding actin-interacting proteins, displayed LT muscle prevailing expression positively regulated by, the LT iTFs. Loss of dCryAB function resulted in LTs with irregular shape and occasional branched ends also observed in ap and lms mutant contexts. In contrast, enlarged and then split LTs with a greater number of myonuclei formed in Gel mutants while Gel gain of function resulted in unfused myoblasts, collectively indicating that Gel regulates LTs size and prevents splitting by limiting myoblast fusion. Thus, dCryAB and Gel act downstream of Lms and Ap and contribute to preventing LT muscle branching and splitting. Our findings offer first clues to still unknown mechanisms of pathological muscle splitting commonly detected in human dystrophic muscles and causing muscle weakness.


Subject(s)
Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Gelsolin/physiology , Gene Expression Regulation , Genes, Insect , Muscles/ultrastructure , Muscular Dystrophy, Animal/genetics , alpha-Crystallin B Chain/physiology , Animals , Animals, Genetically Modified , CRISPR-Cas Systems , Cell Fusion , Cell Shape , Disease Models, Animal , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Embryo, Nonmammalian , Gelsolin/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Larva , Loss of Function Mutation , Multigene Family , Muscle Cells/metabolism , Muscles/metabolism , Muscular Dystrophy, Animal/pathology , Myoblasts/metabolism , Myoblasts/ultrastructure , RNA, Messenger/metabolism , Transcription Factors/physiology , Transcription, Genetic , alpha-Crystallin B Chain/genetics
12.
Elife ; 102021 02 17.
Article in English | MEDLINE | ID: mdl-33594977

ABSTRACT

Blood cells arise from diverse pools of stem and progenitor cells. Understanding progenitor heterogeneity is a major challenge. The Drosophila larval lymph gland is a well-studied model to understand blood progenitor maintenance and recapitulates several aspects of vertebrate hematopoiesis. However in-depth analysis has focused on the anterior lobe progenitors (AP), ignoring the posterior progenitors (PP) from the posterior lobes. Using in situ expression mapping and developmental and transcriptome analysis, we reveal PP heterogeneity and identify molecular-genetic tools to study this abundant progenitor population. Functional analysis shows that PP resist differentiation upon immune challenge, in a JAK-STAT-dependent manner. Upon wasp parasitism, AP downregulate JAK-STAT signaling and form lamellocytes. In contrast, we show that PP activate STAT92E and remain undifferentiated, promoting survival. Stat92E knockdown or genetically reducing JAK-STAT signaling permits PP lamellocyte differentiation. We discuss how heterogeneity and compartmentalization allow functional segregation in response to systemic cues and could be widely applicable.


Subject(s)
Drosophila melanogaster/immunology , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Animals , Drosophila melanogaster/parasitology , Hematopoiesis/physiology , Hemocytes/immunology , Hemocytes/metabolism , Janus Kinases/genetics , Larva/immunology , Larva/parasitology , Lymph Nodes/physiology , STAT Transcription Factors/genetics , Signal Transduction , Stem Cells , Wasps/physiology
13.
Int J Mol Sci ; 23(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35008525

ABSTRACT

Oxaliplatin, the first-line chemotherapeutic agent against colorectal cancer (CRC), induces peripheral neuropathies, which can lead to dose limitation and treatment discontinuation. Downregulation of potassium channels, which involves histone deacetylase (HDAC) activity, has been identified as an important tuner of acute oxaliplatin-induced hypersensitivity. MS-275, a class I histone deacetylase inhibitor (HDACi), prevents acute oxaliplatin-induced peripheral neuropathy (OIPN). Moreover, MS-275 exerts anti-tumor activity in several types of cancers, including CRC. We thus hypothesized that MS-275 could exert both a preventive effect against OIPN and potentially a synergistic effect combined with oxaliplatin against CRC development. We first used RNAseq to assess transcriptional changes occurring in DRG neurons from mice treated by repeated injection of oxaliplatin. Moreover, we assessed the effects of MS-275 on chronic oxaliplatin-induced peripheral neuropathy development in vivo on APCMin/+ mice and on cancer progression when combined with oxaliplatin, both in vivo on APCMin/+ mice and in a mouse model of an orthotopic allograft of the CT26 cell line as well as in vitro in T84 and HT29 human CRC cell lines. We found 741 differentially expressed genes (DEGs) between oxaliplatin- and vehicle-treated animals. While acute OIPN is known as a channelopathy involving HDAC activity, chronic OIPN exerts weak ion channel transcriptional changes and no HDAC expression changes in peripheral neurons from OIPN mice. However, MS-275 prevents the development of sensory neuropathic symptoms induced by repeated oxaliplatin administration in APCMin/+ mice. Moreover, combined with oxaliplatin, MS-275 also exerts synergistic antiproliferative and increased survival effects in CT26-bearing mice. Consistently, combined drug associations exert synergic apoptotic and cell death effects in both T84 and HT29 human CRC cell lines. Our results strongly suggest combining oxaliplatin and MS-275 administration in CRC patients in order to potentiate the antiproliferative action of chemotherapy, while preventing its neurotoxic effect.


Subject(s)
Benzamides/pharmacology , Cell Proliferation/drug effects , Histone Deacetylase Inhibitors/pharmacology , Neurotoxicity Syndromes/drug therapy , Oxaliplatin/pharmacology , Pyridines/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Death/drug effects , Cell Line, Tumor , Female , HT29 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
14.
Front Cell Dev Biol ; 9: 747563, 2021.
Article in English | MEDLINE | ID: mdl-34977007

ABSTRACT

To ensure locomotion and body stability, the active role of muscle contractions relies on a stereotyped muscle pattern set in place during development. This muscle patterning requires a precise assembly of the muscle fibers with the skeleton via a specialized connective tissue, the tendon. Like in vertebrate limbs, Drosophila leg muscles make connections with specific long tendons that extend through different segments. During the leg disc development, cell precursors of long tendons rearrange and collectively migrate to form a tube-shaped structure. A specific developmental program underlies this unique feature of tendon-like cells in the Drosophila model. We provide for the first time a transcriptomic profile of leg tendon precursors through fluorescence-based cell sorting. From promising candidates, we identified the Krüppel-like factor Dar1 as a critical actor of leg tendon development. Specifically expressed in the leg tendon precursors, loss of dar1 disrupts actin-rich filopodia formation and tendon elongation. Our findings show that Dar1 acts downstream of Stripe and is required to set up the correct number of tendon progenitors.

15.
Br J Cancer ; 124(4): 805-816, 2021 02.
Article in English | MEDLINE | ID: mdl-33214683

ABSTRACT

BACKGROUND: Understanding the pathways that drive adrenocortical carcinoma (ACC) is essential to the development of more effective therapies. This study investigates the role of the transcription factor HOXB9 and other HOX factors in ACC and its treatment. METHODS: We used transgenic mouse models to determine the role of Hoxb9 in adrenal tumour development. Patient transcriptomic data was analysed for the expression of HOX genes and their association with disease. Drug response studies on various adrenocortical models were done to establish novel therapeutic options. RESULTS: Our human ACC dataset analyses showed high expression of HOXB9, and other HOX factors, are associated with poorer prognosis. Transgenic overexpression of Hoxb9 in the adrenal cortex of mice with activated Ctnnb1 led to larger adrenal tumours. This phenotype was preferentially observed in male mice and was characterised by more proliferating cells and an increase in the expression of cell cycle genes, including Ccne1. Adrenal tumour cells were found to be dependent on HOX function for survival and were sensitive to a specific peptide inhibitor. CONCLUSIONS: These studies show Hoxb9 can promote adrenal tumour progression in a sex-dependent manner and have identified HOX factors as potential drug targets, leading to novel therapeutic approaches in ACC.


Subject(s)
Adrenal Cortex Neoplasms/drug therapy , Adrenal Cortex Neoplasms/genetics , Adrenocortical Carcinoma/drug therapy , Adrenocortical Carcinoma/genetics , Homeodomain Proteins/genetics , Peptides/pharmacology , Adrenal Cortex Neoplasms/pathology , Adrenocortical Carcinoma/pathology , Animals , Cell Proliferation/genetics , Female , Gene Expression , Homeodomain Proteins/biosynthesis , Humans , Male , Mice , Mice, Transgenic , Molecular Targeted Therapy , Peptides/genetics
16.
PLoS Biol ; 18(12): e3000948, 2020 12.
Article in English | MEDLINE | ID: mdl-33284790

ABSTRACT

Chronic inflammation is now a well-known precursor for cancer development. Infectious prostatitis are the most common causes of prostate inflammation, but emerging evidence points the role of metabolic disorders as a potential source of cancer-related inflammation. Although the widely used treatment for prostate cancer based on androgen deprivation therapy (ADT) effectively decreases tumor size, it also causes profound alterations in immune tumor microenvironment within the prostate. Here, we demonstrate that prostates of a mouse model invalidated for nuclear receptors liver X receptors (LXRs), crucial lipid metabolism and inflammation integrators, respond in an unexpected way to androgen deprivation. Indeed, we observed profound alterations in immune cells composition, which was associated with chronic inflammation of the prostate. This was explained by the recruitment of phagocytosis-deficient macrophages leading to aberrant hyporesponse to castration. This phenotypic alteration was sufficient to allow prostatic neoplasia. Altogether, these data suggest that ADT and inflammation resulting from metabolic alterations interact to promote aberrant proliferation of epithelial prostate cells and development of neoplasia. This raises the question of the benefit of ADT for patients with metabolic disorders.


Subject(s)
Immunity/physiology , Liver X Receptors/metabolism , Prostate/metabolism , Androgen Antagonists/immunology , Androgens/metabolism , Animals , Disease Models, Animal , Immunity/immunology , Liver X Receptors/genetics , Liver X Receptors/immunology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Neoplasms/etiology , Neoplasms/immunology , Neoplasms/metabolism , Prostate/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Receptors, Cytoplasmic and Nuclear/metabolism , Tumor Microenvironment
17.
Nat Commun ; 11(1): 2300, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385236

ABSTRACT

One of the most important but less understood step of epithelial tumourigenesis occurs when cells acquire the ability to leave their epithelial compartment. This phenomenon, described as basal epithelial cell extrusion (basal extrusion), represents the first step of tumour invasion. However, due to lack of adequate in vivo model, implication of emblematic signalling pathways such as Ras/Mitogen-Activated Protein Kinase (MAPK) and phosphoinositide 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathways, is scarcely described in this phenomenon. We have developed a unique model of basal extrusion in the Drosophila accessory gland. There, we demonstrate that both Ras/MAPK and PI3K/AKT/mTOR pathways are necessary for basal extrusion. Furthermore, as in prostate cancer, we show that these pathways are co-activated. This occurs through set up of Epidermal Growth Factor Receptor (EGFR) and Insulin Receptor (InR) dependent autocrine loops, a phenomenon that, considering human data, could be relevant for prostate cancer.


Subject(s)
Drosophila Proteins/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Drosophila , Exocrine Glands/metabolism , Male , Prostatic Neoplasms/metabolism , Signal Transduction/physiology
18.
Elife ; 82019 12 12.
Article in English | MEDLINE | ID: mdl-31829940

ABSTRACT

Cardiac conduction defects decrease life expectancy in myotonic dystrophy type 1 (DM1), a CTG repeat disorder involving misbalance between two RNA binding factors, MBNL1 and CELF1. However, how DM1 condition translates into conduction disorders remains poorly understood. Here we simulated MBNL1 and CELF1 misbalance in the Drosophila heart and performed TU-tagging-based RNAseq of cardiac cells. We detected deregulations of several genes controlling cellular calcium levels, including increased expression of straightjacket/α2δ3, which encodes a regulatory subunit of a voltage-gated calcium channel. Straightjacket overexpression in the fly heart leads to asynchronous heartbeat, a hallmark of abnormal conduction, whereas cardiac straightjacket knockdown improves these symptoms in DM1 fly models. We also show that ventricular α2δ3 expression is low in healthy mice and humans, but significantly elevated in ventricular muscles from DM1 patients with conduction defects. These findings suggest that reducing ventricular straightjacket/α2δ3 levels could offer a strategy to prevent conduction defects in DM1.


Subject(s)
Calcium Channels/biosynthesis , Cardiac Conduction System Disease/genetics , Cardiac Conduction System Disease/physiopathology , Gene Expression Regulation , Myotonic Dystrophy/complications , Animals , Calcium Channels/genetics , Disease Models, Animal , Drosophila , Drosophila Proteins/biosynthesis , Drosophila Proteins/genetics , Humans , Mice
19.
Dis Model Mech ; 11(5)2018 05 21.
Article in English | MEDLINE | ID: mdl-29716962

ABSTRACT

Steinert disease, or myotonic dystrophy type 1 (DM1), is a multisystemic disorder caused by toxic noncoding CUG repeat transcripts, leading to altered levels of two RNA binding factors, MBNL1 and CELF1. The contribution of CELF1 to DM1 phenotypes is controversial. Here, we show that the Drosophila CELF1 family member, Bru-3, contributes to pathogenic muscle defects observed in a Drosophila model of DM1. Bru-3 displays predominantly cytoplasmic expression in muscles and its muscle-specific overexpression causes a range of phenotypes also observed in the fly DM1 model, including affected motility, fiber splitting, reduced myofiber length and altered myoblast fusion. Interestingly, comparative genome-wide transcriptomic analyses revealed that Bru-3 negatively regulates levels of mRNAs encoding a set of sarcomere components, including Actn transcripts. Conversely, it acts as a positive regulator of Actn translation. As CELF1 displays predominantly cytoplasmic expression in differentiating C2C12 myotubes and binds to Actn mRNA, we hypothesize that it might exert analogous functions in vertebrate muscles. Altogether, we propose that cytoplasmic Bru-3 contributes to DM1 pathogenesis in a Drosophila model by regulating sarcomeric transcripts and protein levels.


Subject(s)
Drosophila Proteins/metabolism , Muscles/metabolism , Myotonic Dystrophy/metabolism , RNA-Binding Proteins/metabolism , Sarcomeres/metabolism , Animals , Cell Fusion , Cell Line , Drosophila melanogaster/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Larva/metabolism , Mice , Models, Biological , Movement , Muscle Contraction , Muscle Fibers, Skeletal/metabolism , Muscles/pathology , Muscles/physiopathology , Myoblasts/metabolism , Myotonic Dystrophy/pathology , Myotonic Dystrophy/physiopathology , Phenotype , Protein Binding , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
20.
J Vis Exp ; (103)2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26381166

ABSTRACT

Measuring levels of mRNAs in the process of translation in individual cells provides information on the proteins involved in cellular functions at a given point in time. The protocol dubbed Translating Ribosome Affinity Purification (TRAP) is able to capture this mRNA translation process in a cell-type-specific manner. Based on the affinity purification of polysomes carrying a tagged ribosomal subunit, TRAP can be applied to translatome analyses in individual cells, making it possible to compare cell types during the course of developmental processes or to track disease development progress and the impact of potential therapies at molecular level. Here we report an optimized version of the TRAP protocol, called TRAP-rc (rare cells), dedicated to identifying engaged-in-translation RNAs from rare cell populations. TRAP-rc was validated using the Gal4/UAS targeting system in a restricted population of muscle cells in Drosophila embryos. This novel protocol allows the recovery of cell-type-specific RNA in sufficient quantities for global gene expression analytics such as microarrays or RNA-seq. The robustness of the protocol and the large collections of Gal4 drivers make TRAP-rc a highly versatile approach with potential applications in cell-specific genome-wide studies.


Subject(s)
RNA, Messenger/isolation & purification , Animals , Animals, Genetically Modified , Chromatography, Affinity/methods , Drosophila , Gene Expression , Gene Expression Profiling/methods , Magnetics/methods , Muscles/chemistry , Muscles/cytology , Muscles/physiology , Polyribosomes/genetics , Protein Biosynthesis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Ribosomes/chemistry , Ribosomes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...