Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Proc Natl Acad Sci U S A ; 119(19): e2118385119, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35500115

ABSTRACT

Embryonic stem cells (ESCs) are defined by their ability to self-renew and the potential to differentiate into all tissues of the developing organism. We previously demonstrated that deleting the catalytic SET domain of the Set1A/complex of proteins associated with SET1 histone methyltransferase (Set1A/COMPASS) in mouse ESCs does not impair their viability or ability to self-renew; however, it leads to defects in differentiation. The precise mechanisms by which Set1A executes these functions remain to be elucidated. In this study, we demonstrate that mice lacking the SET domain of Set1A are embryonic lethal at a stage that is unique from null alleles. To gain insight into Set1A function in regulating pluripotency, we conducted a CRISPR/Cas9-mediated dropout screen and identified the MOZ/MORF (monocytic leukaemia zinc finger protein/monocytic leukaemia zinc finger protein-related factor) and HBO1 (HAT bound to ORC1) acetyltransferase complex member ING5 as a synthetic perturbation to Set1A. The loss of Ing5 in Set1AΔSET mouse ESCs decreases the fitness of these cells, and the simultaneous loss of ING5 and in Set1AΔSET leads to up-regulation of differentiation-associated genes. Taken together, our results point toward Set1A/COMPASS and ING5 as potential coregulators of the self-renewal and differentiation status of ESCs.


Subject(s)
Histones , Mouse Embryonic Stem Cells , Animals , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Lysine/metabolism , Mice , Mouse Embryonic Stem Cells/metabolism , Synthetic Lethal Mutations , Tumor Suppressor Proteins
2.
Genes Dev ; 36(3-4): 149-166, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35115380

ABSTRACT

The process of tissue regeneration occurs in a developmentally timed manner, yet the role of circadian timing is not understood. Here, we identify a role for the adult muscle stem cell (MuSC)-autonomous clock in the control of muscle regeneration following acute ischemic injury. We observed greater muscle repair capacity following injury during the active/wake period as compared with the inactive/rest period in mice, and loss of Bmal1 within MuSCs leads to impaired muscle regeneration. We demonstrate that Bmal1 loss in MuSCs leads to reduced activated MuSC number at day 3 postinjury, indicating a failure to properly expand the myogenic precursor pool. In cultured primary myoblasts, we observed that loss of Bmal1 impairs cell proliferation in hypoxia (a condition that occurs in the first 1-3 d following tissue injury in vivo), as well as subsequent myofiber differentiation. Loss of Bmal1 in both cultured myoblasts and in vivo activated MuSCs leads to reduced glycolysis and premature activation of prodifferentiation gene transcription and epigenetic remodeling. Finally, hypoxic cell proliferation and myofiber formation in Bmal1-deficient myoblasts are restored by increasing cytosolic NAD+ Together, we identify the MuSC clock as a pivotal regulator of oxygen-dependent myoblast cell fate and muscle repair through the control of the NAD+-driven response to injury.


Subject(s)
ARNTL Transcription Factors , NAD , Satellite Cells, Skeletal Muscle , ARNTL Transcription Factors/genetics , Animals , Cell Differentiation/genetics , Hypoxia , Mice , Muscle Development/genetics , Muscle, Skeletal , Myoblasts
3.
Genes Dev ; 35(23-24): 1642-1656, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34819353

ABSTRACT

Mutations in the PHIP/BRWD2 chromatin regulator cause the human neurodevelopmental disorder Chung-Jansen syndrome, while alterations in PHIP expression are linked to cancer. Precisely how PHIP functions in these contexts is not fully understood. Here we demonstrate that PHIP is a chromatin-associated CRL4 ubiquitin ligase substrate receptor and is required for CRL4 recruitment to chromatin. PHIP binds to chromatin through a trivalent reader domain consisting of a H3K4-methyl binding Tudor domain and two bromodomains (BD1 and BD2). Using semisynthetic nucleosomes with defined histone post-translational modifications, we characterize PHIPs BD1 and BD2 as respective readers of H3K14ac and H4K12ac, and identify human disease-associated mutations in each domain and the intervening linker region that likely disrupt chromatin binding. These findings provide new insight into the biological function of this enigmatic chromatin protein and set the stage for the identification of both upstream chromatin modifiers and downstream targets of PHIP in human disease.


Subject(s)
Neoplasms , Neurodevelopmental Disorders , Chromatin , Histones/metabolism , Humans , Membrane Proteins , Neoplasms/genetics , Neurodevelopmental Disorders/genetics , Nucleosomes , Proto-Oncogene Proteins
4.
Mol Cell ; 81(21): 4413-4424.e5, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34480849

ABSTRACT

Based on in vitro studies, it has been demonstrated that the DSIF complex, composed of SPT4 and SPT5, regulates the elongation stage of transcription catalyzed by RNA polymerase II (RNA Pol II). The precise cellular function of SPT5 is not clear, because conventional gene depletion strategies for SPT5 result in loss of cellular viability. Using an acute inducible protein depletion strategy to circumvent this issue, we report that SPT5 loss triggers the ubiquitination and proteasomal degradation of the core RNA Pol II subunit RPB1, a process that we show to be evolutionarily conserved from yeast to human cells. RPB1 degradation requires the E3 ligase Cullin 3, the unfoldase VCP/p97, and a novel form of CDK9 kinase complex. Our study demonstrates that SPT5 stabilizes RNA Pol II specifically at promoter-proximal regions, permitting RNA Pol II release from promoters into gene bodies and providing mechanistic insight into the cellular function of SPT5 in safeguarding accurate gene expression.


Subject(s)
Cullin Proteins/metabolism , Nuclear Proteins/metabolism , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Transcriptional Elongation Factors/metabolism , Animals , Cell Survival , Chromosomal Proteins, Non-Histone/metabolism , Cullin Proteins/chemistry , Fibroblasts/metabolism , Humans , Indoleacetic Acids/chemistry , Mice , Nedd4 Ubiquitin Protein Ligases/chemistry , Promoter Regions, Genetic , Proteasome Endopeptidase Complex/chemistry , Proteome , Proteomics/methods , Ubiquitin-Protein Ligases/chemistry , Valosin Containing Protein/chemistry , Valosin Containing Protein/metabolism
5.
Neuro Oncol ; 23(8): 1348-1359, 2021 08 02.
Article in English | MEDLINE | ID: mdl-33471107

ABSTRACT

BACKGROUND: Diffuse intrinsic pontine glioma (DIPG) is associated with transcriptional dysregulation driven by H3K27 mutation. The super elongation complex (SEC) is required for transcriptional elongation through release of RNA polymerase II (Pol II). Inhibition of transcription elongation by SEC disruption can be an effective therapeutic strategy of H3K27M-mutant DIPG. Here, we tested the effect of pharmacological disruption of the SEC in H3K27M-mutant DIPG to advance understanding of the molecular mechanism and as a new therapeutic strategy for DIPG. METHODS: Short hairpin RNAs (shRNAs) were used to suppress the expression of AF4/FMR2 4 (AFF4), a central SEC component, in H3K27M-mutant DIPG cells. A peptidomimetic lead compound KL-1 was used to disrupt a functional component of SEC. Cell viability assay, colony formation assay, and apoptosis assay were utilized to analyze the effects of KL-1 treatment. RNA- and ChIP-sequencing were used to determine the effects of KL-1 on gene expression and chromatin occupancy. We treated mice bearing H3K27M-mutant DIPG patient-derived xenografts (PDXs) with KL-1. Intracranial tumor growth was monitored by bioluminescence image and therapeutic response was evaluated by animal survival. RESULTS: Depletion of AFF4 significantly reduced the cell growth of H3K27M-mutant DIPG. KL-1 increased genome-wide Pol II occupancy and suppressed transcription involving multiple cellular processes that promote cell proliferation and differentiation of DIPG. KL-1 treatment suppressed DIPG cell growth, increased apoptosis, and prolonged animal survival with H3K27M-mutant DIPG PDXs. CONCLUSIONS: SEC disruption by KL-1 increased therapeutic benefit in vitro and in vivo, supporting a potential therapeutic activity of KL-1 in H3K27M-mutant DIPG.


Subject(s)
Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Glioma , Animals , Brain Stem Neoplasms/drug therapy , Brain Stem Neoplasms/genetics , Cell Line, Tumor , Glioma/drug therapy , Glioma/genetics , Histones , Mice
6.
Genes Dev ; 35(3-4): 273-285, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33446572

ABSTRACT

The regulation of gene expression catalyzed by RNA polymerase II (Pol II) requires a host of accessory factors to ensure cell growth, differentiation, and survival under environmental stress. Here, using the auxin-inducible degradation (AID) system to study transcriptional activities of the bromodomain and extraterminal domain (BET) and super elongation complex (SEC) families, we found that the CDK9-containing BRD4 complex is required for the release of Pol II from promoter-proximal pausing for most genes, while the CDK9-containing SEC is required for activated transcription in the heat shock response. By using both the proteolysis targeting chimera (PROTAC) dBET6 and the AID system, we found that dBET6 treatment results in two major effects: increased pausing due to BRD4 loss, and reduced enhancer activity attributable to BRD2 loss. In the heat shock response, while auxin-mediated depletion of the AFF4 subunit of the SEC has a more severe defect than AFF1 depletion, simultaneous depletion of AFF1 and AFF4 leads to a stronger attenuation of the heat shock response, similar to treatment with the SEC inhibitor KL-1, suggesting a possible redundancy among SEC family members. This study highlights the usefulness of orthogonal acute depletion/inhibition strategies to identify distinct and redundant biological functions among Pol II elongation factor paralogs.


Subject(s)
Gene Expression/genetics , Peptide Elongation Factors/metabolism , RNA Polymerase II/metabolism , Transcription Factors/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , HCT116 Cells , Heat-Shock Response , Humans , Peptide Elongation Factors/genetics , Proteins/genetics , Proteins/metabolism , RNA Polymerase II/genetics , Transcription Factors/genetics
7.
Genes Dev ; 34(21-22): 1493-1502, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33033055

ABSTRACT

Catalytic-inactivating mutations within the Drosophila enhancer H3K4 mono-methyltransferase Trr and its mammalian homologs, MLL3/4, cause only minor changes in gene expression compared with whole-gene deletions for these COMPASS members. To identify essential histone methyltransferase-independent functions of Trr, we screened to identify a minimal Trr domain sufficient to rescue Trr-null lethality and demonstrate that this domain binds and stabilizes Utx in vivo. Using the homologous MLL3/MLL4 human sequences, we mapped a short ∼80-amino-acid UTX stabilization domain (USD) that promotes UTX stability in the absence of the rest of MLL3/4. Nuclear UTX stability is enhanced when the USD is fused with the MLL4 HMG-box. Thus, COMPASS-dependent UTX stabilization is an essential noncatalytic function of Trr/MLL3/MLL4, suggesting that stabilizing UTX could be a therapeutic strategy for cancers with MLL3/4 loss-of-function mutations.


Subject(s)
Conserved Sequence/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Genes, Lethal/genetics , Histone-Lysine N-Methyltransferase/genetics , Oxidoreductases, N-Demethylating/genetics , Animals , Gene Deletion , Gene Expression Regulation/genetics , HCT116 Cells , Humans , Protein Domains , Protein Stability
8.
Proc Natl Acad Sci U S A ; 117(44): 27365-27373, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33077595

ABSTRACT

Actively transcribed genes in mammals are decorated by H3K79 methylation, which is correlated with transcription levels and is catalyzed by the histone methyltransferase DOT1L. DOT1L is required for mammalian development, and the inhibition of its catalytic activity has been extensively studied for cancer therapy; however, the mechanisms underlying DOT1L's functions in normal development and cancer pathogenesis remain elusive. To dissect the relationship between H3K79 methylation, cellular differentiation, and transcription regulation, we systematically examined the role of DOT1L and its catalytic activity in embryonic stem cells (ESCs). DOT1L is dispensable for ESC self-renewal but is required for establishing the proper expression signature of neural progenitor cells, while catalytic inactivation of DOT1L has a lesser effect. Furthermore, DOT1L loss, rather than its catalytic inactivation, causes defects in glial cell specification. Although DOT1L loss by itself has no major defect in transcription elongation, transcription elongation defects seen with the super elongation complex inhibitor KL-2 are exacerbated in DOT1L knockout cells, but not in catalytically dead DOT1L cells, revealing a role of DOT1L in promoting productive transcription elongation that is independent of H3K79 methylation. Taken together, our study reveals a catalytic-independent role of DOT1L in modulating cell-fate determination and in transcriptional elongation control.


Subject(s)
Cell Differentiation/genetics , Histone-Lysine N-Methyltransferase/metabolism , Transcription Elongation, Genetic/physiology , Cell Proliferation/drug effects , DNA Methylation/physiology , Embryonic Stem Cells/metabolism , Epigenesis, Genetic/genetics , Epigenomics , Gene Expression Regulation , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Humans , Lysine/metabolism , Methylation , Methyltransferases/metabolism , Neural Stem Cells/metabolism , Protein Processing, Post-Translational , Transcriptional Elongation Factors/metabolism
9.
Sci Adv ; 6(26): eaaz4764, 2020 06.
Article in English | MEDLINE | ID: mdl-32637595

ABSTRACT

Set1A and Set1B, two members of the COMPASS family of methyltransferases that methylate the histone H3 lysine 4 (H3K4) residue, have been accredited as primary depositors of global H3K4 trimethylation (H3K4me3) in mammalian cells. Our previous studies in mouse embryonic stem cells (ESCs) demonstrated that deleting the enzymatic SET domain of Set1A does not perturb bulk H3K4me3, indicating possible compensatory roles played by other COMPASS methyltransferases. Here, we generated a series of ESC lines harboring compounding mutations of COMPASS methyltransferases. We find that Set1B is functionally redundant to Set1A in implementing H3K4me3 at highly expressed genes, while Mll2 deposits H3K4me3 at less transcriptionally active promoters. While Set1A-B/COMPASS is responsible for broad H3K4me3 peaks, Mll2/COMPASS establishes H3K4me3 with narrow breadth. Additionally, Mll2 helps preserve global H3K4me3 levels and peak breadth in the absence of Set1A-B activity. Our results illustrate the biological flexibility of such enzymes in regulating transcription in a context-dependent manner to maintain stem cell identity.

10.
Nat Genet ; 52(6): 615-625, 2020 06.
Article in English | MEDLINE | ID: mdl-32393859

ABSTRACT

The COMPASS protein family catalyzes histone H3 Lys 4 (H3K4) methylation and its members are essential for regulating gene expression. MLL2/COMPASS methylates H3K4 on many developmental genes and bivalent clusters. To understand MLL2-dependent transcriptional regulation, we performed a CRISPR-based screen with an MLL2-dependent gene as a reporter in mouse embryonic stem cells. We found that MLL2 functions in gene expression by protecting developmental genes from repression via repelling PRC2 and DNA methylation machineries. Accordingly, repression in the absence of MLL2 is relieved by inhibition of PRC2 and DNA methyltransferases. Furthermore, DNA demethylation on such loci leads to reactivation of MLL2-dependent genes not only by removing DNA methylation but also by opening up previously CpG methylated regions for PRC2 recruitment, diluting PRC2 at Polycomb-repressed genes. These findings reveal how the context and function of these three epigenetic modifiers of chromatin can orchestrate transcriptional decisions and demonstrate that prevention of active repression by the context of the enzyme and not H3K4 trimethylation underlies transcriptional regulation on MLL2/COMPASS targets.


Subject(s)
DNA Methylation , Gene Expression Regulation, Developmental , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Mouse Embryonic Stem Cells/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Animals , Chromosomal Proteins, Non-Histone/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Knockdown Techniques , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Lysine/metabolism , Methylation , Mice , Mice, Transgenic , Mouse Embryonic Stem Cells/physiology , Myeloid-Lymphoid Leukemia Protein/genetics , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Promoter Regions, Genetic , Trans-Activators/genetics
11.
Cancer Discov ; 10(9): 1388-1409, 2020 09.
Article in English | MEDLINE | ID: mdl-32444465

ABSTRACT

Splicing alterations are common in diseases such as cancer, where mutations in splicing factor genes are frequently responsible for aberrant splicing. Here we present an alternative mechanism for splicing regulation in T-cell acute lymphoblastic leukemia (T-ALL) that involves posttranslational stabilization of the splicing machinery via deubiquitination. We demonstrate there are extensive exon skipping changes in disease, affecting proteasomal subunits, cell-cycle regulators, and the RNA machinery. We present that the serine/arginine-rich splicing factors (SRSF), controlling exon skipping, are critical for leukemia cell survival. The ubiquitin-specific peptidase 7 (USP7) regulates SRSF6 protein levels via active deubiquitination, and USP7 inhibition alters the exon skipping pattern and blocks T-ALL growth. The splicing inhibitor H3B-8800 affects splicing of proteasomal transcripts and proteasome activity and acts synergistically with proteasome inhibitors in inhibiting T-ALL growth. Our study provides the proof-of-principle for regulation of splicing factors via deubiquitination and suggests new therapeutic modalities in T-ALL. SIGNIFICANCE: Our study provides a new proof-of-principle for posttranslational regulation of splicing factors independently of mutations in aggressive T-cell leukemia. It further suggests a new drug combination of splicing and proteasomal inhibitors, a concept that might apply to other diseases with or without mutations affecting the splicing machinery.This article is highlighted in the In This Issue feature, p. 1241.


Subject(s)
Alternative Splicing/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Phosphoproteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Serine-Arginine Splicing Factors/metabolism , Ubiquitin-Specific Peptidase 7/metabolism , Alternative Splicing/drug effects , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Synergism , Exons/genetics , Humans , Jurkat Cells , Male , Mice , Piperazines/pharmacology , Piperazines/therapeutic use , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proof of Concept Study , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Ubiquitination , Xenograft Model Antitumor Assays
12.
Mol Cell ; 78(1): 112-126.e12, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32243828

ABSTRACT

Delineating how chromosomes fold at length scales beyond one megabase remains obscure relative to smaller-scale folding into TADs, loops, and nucleosomes. We find that rather than simply unfolding chromatin, histone hyperacetylation results in interactions between distant genomic loci separated by tens to hundreds of megabases, even in the absence of transcription. These hyperacetylated "megadomains" are formed by the BRD4-NUT fusion oncoprotein, interact both within and between chromosomes, and form a specific nuclear subcompartment that has elevated gene activity with respect to other subcompartments. Pharmacological degradation of BRD4-NUT results in collapse of megadomains and attenuation of the interactions between them. In contrast, these interactions persist and contacts between newly acetylated regions are formed after inhibiting RNA polymerase II initiation. Our structure-function approach thus reveals that broad chromatin domains of identical biochemical composition, independent of transcription, form nuclear subcompartments, and also indicates the potential of altering chromosome structure for treating human disease.


Subject(s)
Cell Nucleus/genetics , Chromatin/metabolism , Chromosomes, Mammalian/chemistry , Acetylation , Cell Line , Cell Nucleus/metabolism , Chromatin/chemistry , Chromatin/drug effects , Chromosomes, Mammalian/metabolism , Gene Expression , Humans , Male , Nuclear Proteins/metabolism , Oncogene Proteins, Fusion/metabolism
13.
Mol Cell ; 78(2): 261-274.e5, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32155413

ABSTRACT

RNA polymerase II (RNA Pol II) is generally paused at promoter-proximal regions in most metazoans, and based on in vitro studies, this function has been attributed to the negative elongation factor (NELF). Here, we show that upon rapid depletion of NELF, RNA Pol II fails to be released into gene bodies, stopping instead around the +1 nucleosomal dyad-associated region. The transition to the 2nd pause region is independent of positive transcription elongation factor P-TEFb. During the heat shock response, RNA Pol II is rapidly released from pausing at heat shock-induced genes, while most genes are paused and transcriptionally downregulated. Both of these aspects of the heat shock response remain intact upon NELF loss. We find that NELF depletion results in global loss of cap-binding complex from chromatin without global reduction of nascent transcript 5' cap stability. Thus, our studies implicate NELF functioning in early elongation complexes distinct from RNA Pol II pause-release.


Subject(s)
Positive Transcriptional Elongation Factor B/genetics , RNA Polymerase II/genetics , Transcription Factors/genetics , Transcription, Genetic , Animals , Heat-Shock Response/genetics , Humans , Mice , Nucleosomes/genetics , Promoter Regions, Genetic
14.
Sci Adv ; 5(7): eaax2887, 2019 07.
Article in English | MEDLINE | ID: mdl-31281901

ABSTRACT

Using biochemical characterization of fusion proteins associated with endometrial stromal sarcoma, we identified JAZF1 as a new subunit of the NuA4 acetyltransferase complex and CXORF67 as a subunit of the Polycomb Repressive Complex 2 (PRC2). Since CXORF67's interaction with PRC2 leads to decreased PRC2-dependent H3K27me2/3 deposition, we propose a new name for this gene: CATACOMB (catalytic antagonist of Polycomb; official gene name: EZHIP ). We map CATACOMB's inhibitory function to a short highly conserved region and identify a single methionine residue essential for diminution of H3K27me2/3 levels. Remarkably, the amino acid sequence surrounding this critical methionine resembles the oncogenic histone H3 Lys27-to-methionine (H3K27M) mutation found in high-grade pediatric gliomas. As CATACOMB expression is regulated through DNA methylation/demethylation, we propose CATACOMB as the potential interlocutor between DNA methylation and PRC2 activity. We raise the possibility that similar regulatory mechanisms could exist for other methyltransferase complexes such as Trithorax/COMPASS.


Subject(s)
Glioma/metabolism , Histones/metabolism , Neoplasm Proteins/metabolism , Oncogene Proteins/biosynthesis , Polycomb Repressive Complex 2/metabolism , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , DNA Methylation , DNA, Neoplasm , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Glioma/genetics , Glioma/pathology , HCT116 Cells , Histones/genetics , Humans , Methylation , Neoplasm Proteins/genetics , Oncogene Proteins/genetics , Polycomb Repressive Complex 2/genetics
15.
Clin Cancer Res ; 25(1): 222-239, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30224337

ABSTRACT

PURPOSE: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease, affecting children and adults. Chemotherapy treatments show high response rates but have debilitating effects and carry risk of relapse. Previous work implicated NOTCH1 and other oncogenes. However, direct inhibition of these pathways affects healthy tissues and cancer alike. Our goal in this work has been to identify enzymes active in T-ALL whose activity could be targeted for therapeutic purposes. EXPERIMENTAL DESIGN: To identify and characterize new NOTCH1 druggable partners in T-ALL, we coupled studies of the NOTCH1 interactome to expression analysis and a series of functional analyses in cell lines, patient samples, and xenograft models. RESULTS: We demonstrate that ubiquitin-specific protease 7 (USP7) interacts with NOTCH1 and controls leukemia growth by stabilizing the levels of NOTCH1 and JMJD3 histone demethylase. USP7 is highly expressed in T-ALL and is transcriptionally regulated by NOTCH1. In turn, USP7 controls NOTCH1 levels through deubiquitination. USP7 binds oncogenic targets and controls gene expression through stabilization of NOTCH1 and JMJD3 and ultimately H3K27me3 changes. We also show that USP7 and NOTCH1 bind T-ALL superenhancers, and inhibition of USP7 leads to a decrease of the transcriptional levels of NOTCH1 targets and significantly blocks T-ALL cell growth in vitro and in vivo. CONCLUSIONS: These results provide a new model for USP7 deubiquitinase activity through recruitment to oncogenic chromatin loci and regulation of both oncogenic transcription factors and chromatin marks to promote leukemia. Our studies also show that targeting USP7 inhibition could be a therapeutic strategy in aggressive leukemia.


Subject(s)
Jumonji Domain-Containing Histone Demethylases/genetics , Leukemia, T-Cell/genetics , Receptor, Notch1/genetics , Ubiquitin-Specific Peptidase 7/genetics , Animals , Carcinogenesis/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Genetic Therapy , Humans , Jurkat Cells , Leukemia, T-Cell/pathology , Leukemia, T-Cell/therapy , Mice , Signal Transduction/genetics , Xenograft Model Antitumor Assays
16.
Genes Dev ; 33(1-2): 61-74, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30573454

ABSTRACT

Chromosomal translocations of the Mixed-lineage leukemia 1 (MLL1) gene generate MLL chimeras that drive the pathogenesis of acute myeloid and lymphoid leukemia. The untranslocated MLL1 is a substrate for proteolytic cleavage by the endopeptidase threonine aspartase 1 (taspase1); however, the biological significance of MLL1 cleavage by this endopeptidase remains unclear. Here, we demonstrate that taspase1-dependent cleavage of MLL1 results in the destabilization of MLL. Upon loss of taspase1, MLL1 association with chromatin is markedly increased due to the stabilization of its unprocessed version, and this stabilization of the uncleaved MLL1 can result in the displacement of MLL chimeras from chromatin in leukemic cells. Casein kinase II (CKII) phosphorylates MLL1 proximal to the taspase1 cleavage site, facilitating its cleavage, and pharmacological inhibition of CKII blocks taspase1-dependent MLL1 processing, increases MLL1 stability, and results in the displacement of the MLL chimeras from chromatin. Accordingly, inhibition of CKII in a MLL-AF9 mouse model of leukemia delayed leukemic progression in vivo. This study provides insights into the direct regulation of the stability of MLL1 through its cleavage by taspase1, which can be harnessed for targeted therapeutic approaches for the treatment of aggressive leukemia as the result of MLL translocations.


Subject(s)
Endopeptidases/metabolism , Leukemia/therapy , Myeloid-Lymphoid Leukemia Protein/genetics , Animals , Chromatin/metabolism , Disease Models, Animal , Disease Progression , Endopeptidases/genetics , Enzyme Inhibitors/pharmacology , Gene Knockout Techniques , HCT116 Cells , HEK293 Cells , Humans , Leukemia/enzymology , Leukemia/genetics , MCF-7 Cells , Mice , Myeloid-Lymphoid Leukemia Protein/metabolism , Protein Stability , Survival Analysis
17.
Sci Adv ; 4(11): eaau6986, 2018 11.
Article in English | MEDLINE | ID: mdl-30417100

ABSTRACT

The tet methylcytosine dioxygenase 2 (TET2) enzyme catalyzes the conversion of the modified DNA base 5-methylcytosine to 5-hydroxymethylcytosine. TET2 is frequently mutated or dysregulated in multiple human cancers, and loss of TET2 is associated with changes in DNA methylation patterns. Here, using newly developed TET2-specific antibodies and the estrogen response as a model system for studying the regulation of gene expression, we demonstrate that endogenous TET2 occupies active enhancers and facilitates the proper recruitment of estrogen receptor α (ERα). Knockout of TET2 by CRISPR-CAS9 leads to a global increase of DNA methylation at enhancers, resulting in attenuation of the estrogen response. We further identified a positive feedback loop between TET2 and ERα, which further requires MLL3 COMPASS at these enhancers. Together, this study reveals an epigenetic axis coordinating a transcriptional program through enhancer activation via DNA demethylation.


Subject(s)
Breast Neoplasms/metabolism , DNA-Binding Proteins/metabolism , Demethylation , Enhancer Elements, Genetic , Estrogen Receptor alpha/metabolism , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , CRISPR-Cas Systems , Cell Differentiation , Cohort Studies , DNA Methylation , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , Dioxygenases , Epigenesis, Genetic , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/genetics , Female , Humans , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Survival Rate , Tumor Cells, Cultured
18.
Cell ; 175(3): 766-779.e17, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30340042

ABSTRACT

The super elongation complex (SEC) is required for robust and productive transcription through release of RNA polymerase II (Pol II) with its P-TEFb module and promoting transcriptional processivity with its ELL2 subunit. Malfunction of SEC contributes to multiple human diseases including cancer. Here, we identify peptidomimetic lead compounds, KL-1 and its structural homolog KL-2, which disrupt the interaction between the SEC scaffolding protein AFF4 and P-TEFb, resulting in impaired release of Pol II from promoter-proximal pause sites and a reduced average rate of processive transcription elongation. SEC is required for induction of heat-shock genes and treating cells with KL-1 and KL-2 attenuates the heat-shock response from Drosophila to human. SEC inhibition downregulates MYC and MYC-dependent transcriptional programs in mammalian cells and delays tumor progression in a mouse xenograft model of MYC-driven cancer, indicating that small-molecule disruptors of SEC could be used for targeted therapy of MYC-induced cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms, Experimental/drug therapy , Positive Transcriptional Elongation Factor B/metabolism , Repressor Proteins/metabolism , Transcription Elongation, Genetic/drug effects , Transcriptional Elongation Factors/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Drosophila , Female , HCT116 Cells , HEK293 Cells , Heat-Shock Response , Humans , Male , Mice , Mice, Inbred BALB C , Protein Binding/drug effects , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA Polymerase II/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
19.
Nat Med ; 24(6): 758-769, 2018 06.
Article in English | MEDLINE | ID: mdl-29785026

ABSTRACT

The lysine methyltransferase KMT2C (also known as MLL3), a subunit of the COMPASS complex, implements monomethylation of Lys4 on histone H3 (H3K4) at gene enhancers. KMT2C (hereafter referred to as MLL3) frequently incurs point mutations across a range of human tumor types, but precisely how these lesions alter MLL3 function and contribute to oncogenesis is unclear. Here we report a cancer mutational hotspot in MLL3 within the region encoding its plant homeodomain (PHD) repeats and demonstrate that this domain mediates association of MLL3 with the histone H2A deubiquitinase and tumor suppressor BAP1. Cancer-associated mutations in the sequence encoding the MLL3 PHD repeats disrupt the interaction between MLL3 and BAP1 and correlate with poor patient survival. Cancer cells that had PHD-associated MLL3 mutations or lacked BAP1 showed reduced recruitment of MLL3 and the H3K27 demethylase KDM6A (also known as UTX) to gene enhancers. As a result, inhibition of the H3K27 methyltransferase activity of the Polycomb repressive complex 2 (PRC2) in tumor cells harboring BAP1 or MLL3 mutations restored normal gene expression patterns and impaired cell proliferation in vivo. This study provides mechanistic insight into the oncogenic effects of PHD-associated mutations in MLL3 and suggests that restoration of a balanced state of Polycomb-COMPASS activity may have therapeutic efficacy in tumors that bear mutations in the genes encoding these epigenetic factors.


Subject(s)
DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic , Epigenesis, Genetic , Polycomb-Group Proteins/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , Chromatin/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Histone Demethylases/metabolism , Mice, Nude , Mutation/genetics , Nuclear Proteins/metabolism , PHD Zinc Fingers , Protein Binding , Survival Analysis , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism
20.
Sci Adv ; 4(1): eaap8747, 2018 01.
Article in English | MEDLINE | ID: mdl-29404406

ABSTRACT

Chromatin regulators control cellular differentiation by orchestrating dynamic developmental gene expression programs, and hence, malfunctions in the regulation of chromatin state contribute to both developmental disorders and disease state. Mll4 (Kmt2d), a member of the COMPASS (COMplex of Proteins ASsociated with Set1) protein family that implements histone H3 lysine 4 monomethylation (H3K4me1) at enhancers, is essential for embryonic development and functions as a pancancer tumor suppressor. We define the roles of Mll4/COMPASS and its catalytic activity in the maintenance and exit of ground-state pluripotency in murine embryonic stem cells (ESCs). Mll4 is required for ESC to exit the naive pluripotent state; however, its intrinsic catalytic activity is dispensable for this process. The depletion of the H3K4 demethylase Lsd1 (Kdm1a) restores the ability of Mll4 null ESCs to transition from naive to primed pluripotency. Thus, we define an opposing regulatory axis, wherein Lsd1 and associated co-repressors directly repress Mll4-activated gene targets. This finding has broad reaching implications for human developmental syndromes and the treatment of tumors carrying Mll4 mutations.


Subject(s)
Cell Differentiation , Enhancer Elements, Genetic , Epigenesis, Genetic , Histone Demethylases/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Mouse Embryonic Stem Cells/metabolism , Multiprotein Complexes/metabolism , Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation/genetics , Cell Self Renewal/genetics , Histone-Lysine N-Methyltransferase/chemistry , Mice , Mice, Knockout , Mouse Embryonic Stem Cells/cytology , Pluripotent Stem Cells/cytology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...