Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 334: 138875, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37187379

ABSTRACT

Previous studies have evaluated method performance for quantifying and characterizing microplastics in clean water, but little is known about the efficacy of procedures used to extract microplastics from complex matrices. Here we provided 15 laboratories with samples representing four matrices (i.e., drinking water, fish tissue, sediment, and surface water) each spiked with a known number of microplastic particles spanning a variety of polymers, morphologies, colors, and sizes. Percent recovery (i.e., accuracy) in complex matrices was particle size dependent, with ∼60-70% recovery for particles >212 µm, but as little as 2% recovery for particles <20 µm. Extraction from sediment was most problematic, with recoveries reduced by at least one-third relative to drinking water. Though accuracy was low, the extraction procedures had no observed effect on precision or chemical identification using spectroscopy. Extraction procedures greatly increased sample processing times for all matrices with the extraction of sediment, tissue, and surface water taking approximately 16, 9, and 4 times longer than drinking water, respectively. Overall, our findings indicate that increasing accuracy and reducing sample processing times present the greatest opportunities for method improvement rather than particle identification and characterization.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Animals , Microplastics , Plastics , Water Pollutants, Chemical/analysis , Environmental Monitoring
2.
Chemosphere ; 313: 137300, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36414038

ABSTRACT

Fourier transform infrared (FTIR) and Raman microspectroscopy are methods applied in microplastics research to determine the chemical identity of microplastics. These techniques enable quantification of microplastic particles across various matrices. Previous work has highlighted the benefits and limitations of each method and found these to be complimentary. Within this work, metadata collected within an interlaboratory method validation study was used to determine which variables most influenced successful chemical identification of un-weathered microplastics in simulated drinking water samples using FTIR and Raman microspectroscopy. No variables tested had a strong correlation with the accuracy of chemical identification (r = ≤0.63). The variables most correlated with accuracy differed between the two methods, and include both physical characteristics of particles (color, morphology, size, polymer type), and instrumental parameters (spectral collection mode, spectral range). Based on these results, we provide technical recommendations to improve capabilities of both methods for measuring microplastics in drinking water and highlight priorities for further research. For FTIR microspectroscopy, recommendations include considering the type of particle in question to inform sample presentation and spectral collection mode for sample analysis. Instrumental parameters should be adjusted for certain particle types when using Raman microspectroscopy. For both instruments, the study highlighted the need for harmonization of spectral reference libraries among research groups, including the use of libraries containing reference materials of both weathered plastic and natural materials that are commonly found in environmental samples.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Microplastics/analysis , Plastics/analysis , Drinking Water/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
3.
Chemosphere ; 308(Pt 3): 136449, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36115477

ABSTRACT

Microscopy is often the first step in microplastic analysis and is generally followed by spectroscopy to confirm material type. The value of microscopy lies in its ability to provide count, size, color, and morphological information to inform toxicity and source apportionment. To assess the accuracy and precision of microscopy, we conducted a method evaluation study. Twenty-two laboratories from six countries were provided three blind spiked clean water samples and asked to follow a standard operating procedure. The samples contained a known number of microplastics with different morphologies (fiber, fragment, sphere), colors (clear, white, green, blue, red, and orange), polymer types (PE, PS, PVC, and PET), and sizes (ranging from roughly 3-2000 µm), and natural materials (natural hair, fibers, and shells; 100-7000 µm) that could be mistaken for microplastics (i.e., false positives). Particle recovery was poor for the smallest size fraction (3-20 µm). Average recovery (±StDev) for all reported particles >50 µm was 94.5 ± 56.3%. After quality checks, recovery for >50 µm spiked particles was 51.3 ± 21.7%. Recovery varied based on morphology and color, with poorest recovery for fibers and the largest deviations for clear and white particles. Experience mattered; less experienced laboratories tended to report higher concentration and had a higher variance among replicates. Participants identified opportunity for increased accuracy and precision through training, improved color and morphology keys, and method alterations relevant to size fractionation. The resulting data informs future work, constraining and highlighting the value of microscopy for microplastics.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Humans , Microscopy , Plastics/analysis , Polymers , Polyvinyl Chloride/analysis , Water/analysis , Water Pollutants, Chemical/analysis
4.
Harmful Algae ; 108: 102103, 2021 08.
Article in English | MEDLINE | ID: mdl-34588124

ABSTRACT

Blooms of the diatom genus Pseudo-nitzschia occur annually in the Southern California Bight (SCB), and domoic acid (DA) associated with these events can contaminate fisheries, presenting both human and wildlife health risks. Recent studies have suggested that marine sediments may act as a reservoir for DA, extending the risk of food web contamination long after water column blooms have ended. In this study, we conducted a regional assessment of the extent and magnitude of DA in the benthic environment, and monthly observations of sediments and benthic infauna at multiple stations over a 16-month period. DA was widespread in continental shelf sediments of the SCB. The toxin was detected in 54% of all shelf habitats sampled. Detectable concentrations ranged from 0.11 ng/g to 1.36 ng/g. DA was consistently detected in benthic infauna tissues over the monthly timeseries, while the DA concentrations in sediments during the same period were commonly below detection or at low concentrations. The presence of DA in the benthic environment did not always have an apparent water column source, raising the possibility of lateral transport, retention/preservation in sediments or undetected blooms in subsurface waters. In most cases, DA was detected in tissues but not in the co-located surface sediments. Coarse taxonomic sorting of the infauna revealed that the accumulation of DA varied among taxa. We observed that DA was widespread among lower trophic level organisms in this study, potentially acting as a persistent source of DA to higher trophic levels in the benthos.


Subject(s)
Diatoms , Kainic Acid , Food Chain , Geologic Sediments , Kainic Acid/analogs & derivatives
5.
Appl Spectrosc ; 74(9): 1099-1125, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32643389

ABSTRACT

Plastic pollution is a defining environmental contaminant and is considered to be one of the greatest environmental threats of the Anthropocene, with its presence documented across aquatic and terrestrial ecosystems. The majority of this plastic debris falls into the micro (1 µm-5 mm) or nano (1-1000 nm) size range and comes from primary and secondary sources. Its small size makes it cumbersome to isolate and analyze reproducibly, and its ubiquitous distribution creates numerous challenges when controlling for background contamination across matrices (e.g., sediment, tissue, water, air). Although research on microplastics represents a relatively nascent subfield, burgeoning interest in questions surrounding the fate and effects of these debris items creates a pressing need for harmonized sampling protocols and quality control approaches. For results across laboratories to be reproducible and comparable, it is imperative that guidelines based on vetted protocols be readily available to research groups, many of which are either new to plastics research or, as with any new subfield, have arrived at current approaches through a process of trial-and-error rather than in consultation with the greater scientific community. The goals of this manuscript are to (i) outline the steps necessary to conduct general as well as matrix-specific quality assurance and quality control based on sample type and associated constraints, (ii) briefly review current findings across matrices, and (iii) provide guidance for the design of sampling regimes. Specific attention is paid to the source of microplastic pollution as well as the pathway by which contamination occurs, with details provided regarding each step in the process from generating appropriate questions to sampling design and collection.


Subject(s)
Environmental Monitoring/methods , Environmental Pollutants , Microplastics , Quality Control , Specimen Handling/methods , Environmental Pollutants/analysis , Environmental Pollutants/isolation & purification , Guidelines as Topic , Microplastics/analysis , Microplastics/isolation & purification
6.
Ecotoxicology ; 28(1): 117-131, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30547329

ABSTRACT

Hydrodynamics and pollution affect estuarine populations, but their ecological effects have rarely been studied in combination. We conducted two laboratory experiments to quantify whether predator-prey interactions between California killifish, Fundulus parvipinnis, and the polychaete Polydora cornuta vary with flow speed and chlorpyrifos exposure. In one experiment, only F. parvipinnis was exposed to chlorpyrifos; in the other, only P. cornuta was exposed. The flume included a 300-cm2 area of sediment with 24 P. cornuta in a central patch (98 cm2). We videotaped groups of three killifish for 50 min at one of four flow speeds (6, 9, 12, or 15 cm/s) and recorded the proportion of bites directed at the prey patch. Unexposed killifish directed 70% of their bites at the prey patch at 6 cm/s, and prey-patch selection decreased as flow increased. Killifish exposed to chlorpyrifos directed 41% of their bites at the prey patch at 6 cm/s with reduced prey-patch selection relative to unexposed fish at 9 and 12 cm/s. At 15 cm/s, both exposed and unexposed fish displayed non-selective biting. Worms were videotaped to quantify their deposit- and suspension-feeding activities. Exposing worms to chlorpyrifos reduced total feeding activity by ~30%. Suspension feeding was more common at faster flow speeds, but the time worms spent suspension feeding relative to deposit feeding was unaffected by chlorpyrifos. No behavioral changes were noted in either species when the other was exposed to chlorpyrifos. This study highlights how hydrodynamic conditions can alter the relative importance of a toxicant's effects on predator-prey interactions.


Subject(s)
Chlorpyrifos/adverse effects , Feeding Behavior/drug effects , Food Chain , Fundulidae/physiology , Polychaeta/drug effects , Water Movements , Water Pollutants, Chemical/adverse effects , Animals , Dose-Response Relationship, Drug , Insecticides/adverse effects , Random Allocation
7.
Aquat Toxicol ; 170: 335-343, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26454718

ABSTRACT

In coastal waters, pesticides and parasites are widespread stressors that may separately and interactively affect the physiology, behavior, and survival of resident organisms. We investigated the effects of the organophosphate pesticide chlorpyrifos and the trematode parasite Euhaplorchis californiensis on three important traits of California killifish (Fundulus parvipinnis): neurotransmitter activity, release of the stress hormone cortisol, and behavior. Killifish were collected from a population without E. californiensis, and then half of the fish were experimentally infected. Following a 30 day period for parasite maturation, infected and uninfected groups were exposed to four concentrations of chlorpyrifos (solvent control, 1-3ppb) prior to behavior trials to quantify activity, feeding behavior, and anti-predator responses. Water-borne cortisol release rates were measured non-invasively from each fish prior to infection, one-month post-infection, and following pesticide exposure. Killifish exposed to 3ppb chlorpyrifos exhibited a 74.6±6.8% and 60.5±8.3% reduction in brain and muscle acetylcholinesterase (AChE) activity relative to controls. The rate of cortisol release was suppressed by each chlorpyrifos level relative to controls. Killifish exposed to the medium (2ppb) and high (3ppb) pesticide concentrations exhibited reduced activity and a decrease in mean swimming speed following a simulated predator attack. Muscle AChE was positively related to swimming activity while brain AChE was positively related to foraging behavior. ​No effects of the parasite were observed, possibly because of low metacercariae densities achieved through controlled infections. We found that sublethal pesticide exposure has the potential to modify several organismal endpoints with consequences for reduced fitness, including neurological, endocrine, and behavioral responses in an ecologically abundant fish.


Subject(s)
Behavior, Animal/drug effects , Fundulidae/metabolism , Pesticides/toxicity , Trematoda/physiology , Water Pollutants, Chemical/toxicity , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Animals , Brain/drug effects , Brain/enzymology , Chlorpyrifos/toxicity , Fundulidae/parasitology , Gills/drug effects , Gills/metabolism , Hydrocortisone/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/enzymology , Swimming
8.
Ecotoxicology ; 24(2): 391-400, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25421633

ABSTRACT

Coastal development has generated multiple stressors in marine and estuarine ecosystems, including habitat degradation and pollutant exposure, but the effects of these stressors on the ecology of fishes remain poorly understood. We studied the separate and combined effects of an acute 4 h sublethal exposure of the pyrethroid pesticide esfenvalerate and structural habitat complexity on behavior and predation risk of larval topsmelt (Atherinops affinis). Larvae were exposed to four nominal esfenvalerate concentrations (control, 0.12, 0.59, 1.18 µg/L), before placement into 12 L mesocosms with a three-spine stickleback (Gasterosteus aculeatus) predator. Five treatments of artificial eelgrass included a (1) uniform and (2) patchy distribution of eelgrass at a low density (500 shoots per m(2)), a (3) uniform and (4) patchy distribution of eelgrass at a high density (1,000 shoots per m(2)), and (5) the absence of eelgrass. The capture success of predators and aggregative behavior of prey were observed in each mesocosm for 10 min of each trial, and mortality of prey was recorded after 60 min. Exposure to esfenvalerate increased the proportion of larvae with swimming abnormalities. Surprisingly, prey mortality did not increase linearly with pesticide exposure but increased with habitat structure (density of eelgrass), which may have been a consequence of compensating predator behavior. The degree of prey aggregation decreased with both habitat structure and pesticide exposure, suggesting that anti-predator behaviors by prey may have been hampered by the interactive effects of both of these factors.


Subject(s)
Ecosystem , Fishes/physiology , Food Chain , Insecticides/toxicity , Nitriles/toxicity , Pyrethrins/toxicity , Swimming , Animals , Fishes/growth & development , Predatory Behavior , Smegmamorpha/physiology , Zosteraceae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...