Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Transl Anim Sci ; 8: txae072, 2024.
Article in English | MEDLINE | ID: mdl-38745851

ABSTRACT

The objective of this meta-analysis was to develop and evaluate models for predicting nitrogen (N) excretion in feces, urine, and manure in beef cattle in South America. The study incorporated a total of 1,116 individual observations of N excretion in feces and 939 individual observations of N excretion in feces and in urine (g/d), representing a diverse range of diets, animal genotypes, and management conditions in South America. The dataset also included data on dry matter intake (DMI; kg/d) and nitrogen intake (NI; g/d), concentrations of dietary components, as well as average daily gain (ADG; g/d) and average body weight (BW; kg). Models were derived using linear mixed-effects regression with a random intercept for the study. Fecal N excretion was positively associated with DMI, NI, nonfibrous carbohydrates, average BW, and ADG and negatively associated with EE and CP concentration in the diet. The univariate model predicting fecal N excretion based on DMI (model 1) performed slightly better than the univariate model, which used NI as a predictor variable (model 2) with a root mean square error (RMSE) of 38.0 vs. 39.2%, the RMSE-observations SD ratio (RSR) of 0.81 vs. 0.84, and concordance correlation coefficient (CCC) of 0.53 vs. 0.50, respectively. Models predicting urinary N excretion were less accurate than those derived to predict fecal N excretion, with an average RMSE of 43.7% vs. 37.0%, respectively. Urinary and manure N excretion were positively associated with DMI, NI, CP, average BW, and ADG and negatively associated with neutral detergent fiber concentration in the diet. As opposed to fecal N excretion, the univariate model predicting urinary N excretion using NI (model 10) performed slightly better than the univariate model using DMI (model 9) as predictor variable with an RMSE of 36.0% vs. 39.7%, RSR 0.85 vs. 0.93, and CCC of 0.43 vs. 0.29, respectively. The models developed in this study are applicable for predicting N excretion in beef cattle across a broad spectrum of dietary compositions and animal genotypes in South America. The univariate model using DMI as a predictor is recommended for fecal N prediction, while the univariate model using NI is recommended for predicting urinary and manure N excretion because the use of more complex models resulted in little to no benefits. However, it may be more useful to consider more complex models that incorporate nutrient intakes and diet composition for decision-making when N excretion is a factor to be considered. Three extant equations evaluated in this study have the potential to be used in tropical conditions typical of South America to predict fecal N excretion with good precision and accuracy. However, none of the extant equations are recommended for predicting urine or manure N excretion because of their high RMSE, and low precision and accuracy.

2.
PLoS One ; 18(10): e0293216, 2023.
Article in English | MEDLINE | ID: mdl-37856443

ABSTRACT

We aimed to evaluate the effects of post-ruminal supply of urea (PRU) on nutritional status, and liver metabolism of pregnant beef cows during late gestation. Twenty-four Brahman dams, pregnant from a single sire, and weighing 545 kg ± 23 kg were confined into individual pens at 174 ± 23 d of gestation, and randomly assigned into one of two dietary treatments up to 270 d of gestation: Control (CON, n = 12), consisting of a basal diet supplemented with conventional urea, where the cows were fed with diets containing 13.5 g conventional urea per kg dry matter; and PRU (PRU, n = 12), consisting of a basal diet supplemented with a urea coated to extensively prevent ruminal degradation while being intestinally digestible, where the cows were fed with diets containing 14,8 g urea protected from ruminal degradation per kg dry matter. Post-ruminal supply of urea reduced the urine levels of 3-methylhistidine (P = 0.02). There were no differences between treatments for dry matter intake (DMI; P = 0.76), total digestible nutrient (TDN) intake (P = 0.30), and in the body composition variables, such as, subcutaneous fat thickness (SFT; P = 0.72), and rib eye area (REA; P = 0.85). In addition, there were no differences between treatments for serum levels of glucose (P = 0.87), and serum levels of glucogenic (P = 0.28), ketogenic (P = 0.72), glucogenic, and ketogenic (P = 0.45) amino acids, neither for urea in urine (P = 0.51) as well as urea serum (P = 0.30). One the other hand, enriched pathways were differentiated related to carbohydrate digestion, and absorption, glycolysis, pyruvate metabolism, oxidative phosphorylation, pentose phosphate pathway, and biosynthesis of amino acids of the exclusively expressed proteins in PRU cows. Shifting urea supply from the rumen to post-ruminal compartments decreases muscle catabolism in cows during late gestation. Our findings indicate that post-ruminal urea supplementation for beef cows at late gestation may improve the energy metabolism to support maternal demands. In addition, the post-ruminal urea release seems to be able to trigger pathways to counterbalance the oxidative stress associated to the increase liver metabolic rate.


Subject(s)
Milk , Nutritional Status , Animals , Cattle , Female , Pregnancy , Amino Acids/metabolism , Animal Feed/analysis , Diet/veterinary , Digestion , Fermentation , Lactation , Liver/metabolism , Milk/metabolism , Rumen/metabolism , Urea/metabolism
3.
J Dairy Sci ; 106(1): 233-244, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36333132

ABSTRACT

Lactation diets dependent on rumen undegradable protein (RUP) sources derived from soybean meal (SBM) products are generally high in Lys and poor in Met. We conducted an experiment to evaluate the effects of increasing dietary RUP and altering digestible AA supply by inclusion of heat-treated soybean meal (HTSBM) or high-protein corn dried distillers grains with soluble (DDGS) on performance in mid-lactation dairy cows. Twenty-four Holstein cows (200 ± 40 d in milk and 30.0 ± 3.92 kg/d of milk yield) blocked according to parity, milk yield, and days in milk were used in a 3 × 3 Latin square design experiment with 21-d periods. Treatments were (1) control (CON), a diet with 6.0% RUP containing 15.9% SBM as the main protein source; (2) HTSBM, a diet with 6.7% RUP containing 4.4% HTSBM partially replacing SBM; and (3) high-protein DDGS (FP; FlexyPro, SJC Bioenergia), a diet with 6.9% RUP containing 5.34% FP partially replacing SBM and ground corn. Diets had similar crude protein (16.9%) and net energy of lactation. Data were submitted to ANOVA using the mixed procedure of SAS software (SAS Institute Inc.). Treatment differences were evaluated using orthogonal contrasts: (1) increasing RUP (SBM vs. HTSBM + FP) and (2) altering digestible AA supply (HTSBM vs. FP). Cows fed HTSBM and FP had greater intake (values in parentheses represent treatment means of CON, HTSBM, and FP, respectively) of neutral detergent fiber (7.14, 7.35, and 7.69 kg/d), crude protein (4.27, 4.37, and 4.51 kg/d), and ether extract (0.942, 0.968, and 1.04 kg/d) compared with cows fed CON. Feeding FP resulted in greater intake of neutral detergent fiber and ether extract compared with HTSBM. Cows fed HTSBM and FP had lower sorting index for feed particles <4 mm than cows fed CON (1.029, 1.008, and 1.022). Feeding FP resulted in greater intake of feed particles <4 mm compared with HTSBM. Treatments containing HTSBM or FP tended to decrease organic matter digestibility (72.4, 71.2, and 71.1%), but no other effects were detected in digestibility of neutral detergent fiber, crude protein, or ether extract. No evidence for differences among treatments was detected in excretion of purine derivatives in milk and urine. Milk yield was greater in cows fed HTSBM or FP than in cows fed CON (28.0, 28.9, and 28.8 kg/d, respectively). Cows fed HTSBM or FP tended to have greater energy-corrected milk and protein yield compared with those fed CON. Milk protein concentration was greater in DDGS cows than those in the HTSBM group (3.45 and 3.40%, respectively). No differences were detected in milk fat yield and concentration, milk urea nitrogen, feed efficiency, or serum concentrations of urea and glucose. Overall, increasing dietary RUP by feeding HTSBM or FP improved intake of nutrients and milk yield without affecting feed efficiency. Altering digestible AA supply while maintaining similar dietary RUP had negligible effects on performance of cows.


Subject(s)
Animal Feed , Zea mays , Pregnancy , Female , Cattle , Animals , Zea mays/metabolism , Animal Feed/analysis , Hot Temperature , Detergents/metabolism , Flour , Lactation , Rumen/metabolism , Diet/veterinary , Glycine max/metabolism , Dietary Proteins/metabolism , Nutrients , Urea/metabolism , Ethers/metabolism , Plant Extracts/metabolism
4.
J Dairy Sci ; 105(7): 5714-5722, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35525616

ABSTRACT

Dry malt extract (DME) has been used in animal nutrition as an alternative source of rapidly fermentable carbohydrate. An experiment was conducted to evaluate the partial replacement of ground corn with DME in diets of dairy cows on apparent digestibility, ruminal fermentation, predicted rumen microbial protein supply, N excretion, serum urea-N concentration, and milk yield and composition. Twenty-eight Holstein cows (35.3 ± 5.88 kg/d milk yield and 148 ± 78 d in milk), 4 of which were rumen cannulated, were blocked according to the presence of rumen cannulas, parity, milk yield, and days in milk and enrolled into a crossover design experiment. Experimental periods lasted 21 d, of which the first 14 d were allowed for treatment adaptation and 7 d were used for data collection and sampling. Treatment sequences were composed of control (CON) or DME from barley (Liotécnica Tecnologia em Alimentos) replacing ground corn at 7.62% diet dry matter (~2 kg/d). Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc.) modeling the fixed effects of treatment, period, and their interaction, in addition to the random effect of animal. Ruminal fermentation data were analyzed as repeated measures including time and its interaction with treatment in the previous model as fixed effects. Treatments did not affect nutrient intake or feed sorting. Dry malt extract increased apparent digestibility of CP. Feeding DME decreased ruminal pH and molar percentage of butyrate and increased molar percentage of acetate. No treatment effects were detected for predicted rumen microbial protein supply or N excretion. Cows fed DME had lower serum urea-N concentration than CON cows. Dry malt extract increased yields of actual milk, 3.5% fat-corrected milk, fat, and protein, and improved feed efficiency (fat-corrected milk ÷ dry matter intake). Cows fed DME had lower milk urea nitrogen content in comparison with CON cows. Dry malt extract can partially replace ground corn in the diet while improving milk yield and feed efficiency.


Subject(s)
Hordeum , Milk , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Digestion , Female , Fermentation , Lactation , Milk/chemistry , Nutrients , Plant Extracts/pharmacology , Rumen/metabolism , Urea/metabolism , Zea mays/chemistry
5.
Anim Sci J ; 93(1): e13678, 2022.
Article in English | MEDLINE | ID: mdl-35029003

ABSTRACT

The objective was to evaluate the effect of including low-fat dried distillers grains (DDG) in finishing diets on protein and energy intake and retention and to estimate the protein and energy requirement of young Nellore bulls. Thirty-five animals were used: baseline (n = 4), maintenance (n = 4), and ad libitum intake (n = 27). Ad libitum animals were divided into four groups: diets with the inclusion of DDG at the levels of 0, 150, 300, and 450 g/kg (dry matter basis). At the end of the experiment, all animals were slaughtered. There was a linear reduction with increasing DDG levels in the total digestible nutrients intake (p = 0.008), metabolizable energy (ME) intake (p < 0.010), in total retained energy (p = 0.065), and in heat production (p < 0.001). Metabolizable protein (MP) intake increased linearly (p < 0.010) but retained protein did not differ (p = 0.499). Daily net energy and ME requirement for maintenance were 75.9 and 122 kcal/kg0.75 EBW, respectively. Daily MP for maintenance was 3.6 g/kg0.75 shrunk body weight. DDG inclusion in finishing diets reduces energy intake and deposition, and we recommend the equations of this study to estimate the requirements of young Nellore bulls.


Subject(s)
Animal Feed , Energy Intake , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Body Weight , Cattle , Desiccation , Diet/veterinary , Diet, Fat-Restricted/veterinary , Energy Metabolism , Male , Nutritional Requirements , Proteins/metabolism
6.
Anim Biosci ; 35(8): 1174-1183, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34727638

ABSTRACT

OBJECTIVE: This study was conducted to evaluate the effects of the provision of a protein-rich supplement on productive performance, and metabolic profile on grazing suckling female beef calves in tropical conditions during 150 d of experimentation. METHODS: Fifty-six Nellore suckling female calves, and their respective dams were distributed in a completely randomised design and made to undergo two treatments as follows: UNS (without supplementation), and SUP (supplementation with 5 g/kg body weight [BW] of a protein supplement). Throughout the experiment, animal performance and metabolic profile were evaluated. Also, ureagenesis and gluconeogenesis were assessed for gene expression. RESULTS: SUP female calves showed a higher voluntary intake (p≤0.03) of the diet components evaluated, digestibility of organic matter (p≤0.02) and microbial nitrogen production (MICN; p≤0.02) compared to UNS female calves. In its turn, serum urea nitrogen (p≤0.01) and insulin-like growth factor-1 (p≤0.03) levels and ureagenesis (p≤0.04) increased in SUP female calves compared to UNS female calves. Blood glucose and triglyceride levels were not affected by supplementation. The average daily gain (ADG) from SUP female calves was higher (p≤0.02) compared with UNS female calves. However, supplementation did not affect the body measures of the animals. CONCLUSION: In summary, provision of a protein-rich supplement improves the intake and nutrients digestibility, ADG and final BW and increases metabolic indicators of the protein status in grazing suckling female beef calves in tropical conditions.

7.
Anim Sci J ; 92(1): e13623, 2021.
Article in English | MEDLINE | ID: mdl-34414634

ABSTRACT

This study evaluated the effect of including low-fat dried distillers grains (DDG) on young Nellore bulls performance, nutritional parameters, and nitrogen metabolism. Thirty-five Nellore cattle were randomly divided into four diets: without dried distillers grains (D0) or with the inclusion of DDG at 150 g/kg (D150), 300 g/kg (D300), or 450 g/kg (D450). The evaluation period lasted 126 days, and three periods of collection of feces and urine were carried out. Final body weight (P = 0.099) and average daily gain (P = 0.097) tended to decrease linearly; the digestibility of dry matter (P < 0.001), organic matter (P < 0.001), ether extract (P < 0.001) and nonfiber carbohydrates (P < 0.001), and intakes of total digestible nutrients (TDN, P < 0.001) decreased linearly. The increase in crude protein intake (P < 0.001) did not result in an increase in the amount of nitrogen retained (P = 0.540). We concluded that the inclusion of low-fat DDG in finishing diets up to the level of 450 g/kg tends to reduce animal performance and the intake of TDN.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena/physiology , Cattle/growth & development , Cattle/metabolism , Diet, Fat-Restricted/veterinary , Edible Grain , Animals , Body Weight , Digestion , Eating , Male , Nitrogen/metabolism , Nutritional Status , Weight Gain
8.
Br J Nutr ; 124(11): 1166-1178, 2020 12 14.
Article in English | MEDLINE | ID: mdl-32580810

ABSTRACT

We evaluated the differences between the supplementation of urea in rumen and/or abomasum on forage digestion, N metabolism and urea kinetics in cattle fed a low-quality tropical forage. Five Nellore heifers were fitted with rumen and abomasum fistulas and assigned to a Latin square design. The treatments were control, continuous infusion of urea in the abomasum (AC), continuous infusion of urea in the rumen, a pulse dose of urea in the rumen every 12 h (PR) and a combination of PR and AC. The control exhibited the lowest (P < 0·10) faecal and urinary N losses, which were, overall, increased by supplementation. The highest urinary N losses (P < 0·10) were observed when urea was either totally or partially supplied as a ruminal pulse dose. The rumen N balance was negative for the control and when urea was totally supplied in the abomasum. The greatest microbial N production (P < 0·10) was obtained when urea was partially or totally supplied in the abomasum. Urea supplementation increased (P < 0·10) the amount of urea recycled to the gastrointestinal tract and the amount of urea-N returned to the ornithine cycle. The greatest (P < 0·10) amounts of urea-N used for anabolism were observed when urea was totally and continuously infused in the abomasum. The continuous abomasal infusion also resulted in the highest (P < 0·10) assimilation of microbial N from recycling. The continuous releasing of urea throughout day either in the rumen or abomasum is able to improve N accretion in the animal body, despite mechanism responsible for that being different.


Subject(s)
Animal Nutritional Physiological Phenomena/drug effects , Dietary Supplements , Digestion/drug effects , Urea/administration & dosage , Abomasum/chemistry , Animal Feed , Animals , Cattle , Gastrointestinal Tract/metabolism , Nitrogen/metabolism , Rumen/chemistry
9.
J Dairy Sci ; 100(6): 4435-4447, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28434727

ABSTRACT

We aimed to quantify the productive and metabolic responses, and digestive changes in dairy cows fed various concentrations of soybean oil (SBO) in high-concentrate, sugarcane-based diets. Eight rumen-cannulated multiparous Holstein cows in mid lactation (574 ± 19.1 kg of body weight and 122 ± 6.9 d in milk), averaging 22.5 ± 1.22 kg/d of milk were assigned to replicated 4 × 4 Latin squares. The experimental period lasted 21 d as follows: 14 d for adaptation, followed by a sampling period from d 15 to 21. The diets were formulated with increasing concentrations of SBO [% of dry matter (DM)]: control (0%), low (LSBO; 1.57%), medium (MSBO; 4.43%), and high (HSBO; 7.34%). Dry matter intake decreased quadratically in response to SBO addition. The greatest decrease in DM intake was observed in MSBO and HSBO diets. Both milk and energy-corrected milk yield were quadratically affected by the SBO inclusion, with a slight decrease up to MSBO and substantial decrease in the HSBO diet. The milk fat concentration linearly decreased from 3.78% in the control to 3.50% in the HSBO diet. The potentially digestible neutral detergent fiber digestibility in the rumen decreased from 55.7% in the control to 35.2% in the HSBO diet. The fractional rate of digestion of potentially digestible neutral detergent fiber in the rumen decreased linearly from 3.13 to 1.39%/h from the control to HSBO diet. The fractional rate of indigestible neutral detergent fiber passage in the rumen was quadratically affected, with the lowest value (2.25%/h) for the HSBO diet. Rumen pH increased from 6.42 to 6.67, and ammonia nitrogen decreased from 28.1 to 21.4 mg/dL, in the control and HSBO diets, respectively. Rumen volatile fatty acids decreased quadratically, with the greatest decrease observed in MSBO and HSBO diets. Serum concentrations of glucose, fatty acids, and ß-hydroxybutyrate were unaffected by SBO inclusion. However, serum concentrations of total cholesterol and high- and low-density lipoproteins linearly increased with increasing concentrations of SBO in the diet. Inclusion of SBO at concentrations from 4.43 to 7.34% of the diet DM decreased DM intake, energy-corrected milk production, fiber digestibility, and rumen fermentation and was thus not recommended. Soybean oil supplementation at 1.57% of the diet DM proved to be a safe concentration for dairy cows fed high-concentrate diets with sugarcane as the sole forage.


Subject(s)
Digestion/drug effects , Eating , Lactation , Saccharum , Soybean Oil/pharmacology , 3-Hydroxybutyric Acid/metabolism , Ammonia/metabolism , Animal Feed , Animals , Blood Glucose/metabolism , Cattle , Cholesterol/blood , Digestion/physiology , Fatty Acids/analysis , Fatty Acids/metabolism , Female , Fermentation , Glycolipids , Glycoproteins , Hydrogen-Ion Concentration , Lipid Droplets , Milk/chemistry , Rumen/chemistry , Soybean Oil/administration & dosage
10.
PLoS One ; 10(10): e0139943, 2015.
Article in English | MEDLINE | ID: mdl-26436893

ABSTRACT

Studies have shown that intramuscular adipogenesis and fibrogenesis may concomitantly occur in skeletal muscle of beef cattle. Thus, we hypothesized that the discrepancy of intramuscular fat content in beef from Nellore and Angus was associated with differences in intramuscular adipogenesis and fibrogenesis during the finishing phase. To test our hypothesis, longissimus muscle samples of Nellore (n = 6; BW = 372.5 ± 37.3 kg) and Angus (n = 6; BW = 382.8 ± 23.9 kg) cattle were collected for analysis of gene and protein expression, and quantification of intramuscular fat and collagen. Least-squares means were estimated for the effect of Breed and differences were considered at P ≤ 0.05. A greater intramuscular fat content was observed in skeletal muscle of Angus compared to Nellore cattle (P≤0.05). No differences were observed for mRNA expression of lipogenic and lipolytic markers ACC, FAS, FABP4, SERBP-1, CPT-2, LPL, and ACOX (P > 0.05) in skeletal muscle of Nellore and Angus cattle. Similarly, no differences were observed in mRNA expression of adipogenic markers Zfp423, PPARγ, and C/EBPα (P>0.05) However, a greater PPARγ protein content was observed in skeletal muscle of Angus compared to Nellore cattle (P≤0.05). A greater abundance of adipo/fibrogenic cells, evaluated by the PDGFRα content, was observed in skeletal muscle of Angus than Nellore cattle (P≤0.05). No differences in fibrogenesis were observed in skeletal muscle of Angus and Nellore cattle, which is in accordance with the lack of differences in intramuscular collagen content in beef from both breeds (P>0.05). These findings demonstrate that difference in intramuscular fat content is associated with a slightly enhanced adipogenesis in skeletal muscle of Angus compared to Nellore cattle, while no difference in fibrogenesis.


Subject(s)
Adipogenesis/physiology , Adipose Tissue/metabolism , Collagen/metabolism , Muscle, Skeletal/metabolism , Acetyl-CoA Carboxylase/metabolism , Animals , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Cattle , PPAR gamma/metabolism , Species Specificity , fas Receptor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL