Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 111(6): 1637-43, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21921241

ABSTRACT

The general purpose of this study was to test the effect of exercise training on the left ventricular (LV) pressure-volume relationship (LV/PV) and apoptotic signaling markers in normotensive and hypertensive hearts. Four-month-old female normotensive Wistar-Kyoto rats (WKY; n = 37) and spontaneously hypertensive rats (SHR; n = 38) were assigned to a sedentary (WKY-SED, n = 21; SHR-SED, n = 19) or treadmill-trained (WKY-TRD, n = 16; SHR-TRD, n = 19) group (∼60% Vo(2 peak), 60 min/day, 5 days/wk, 12 wk). Ex vivo LV/PV were established in isovolumic Langendorff-perfused hearts, and LV levels of Akt, phosphorylated Akt (Akt(Pi)), Bad, phosphorylated Bad (Bad(Pi)) c-IAP, x-IAP, calcineurin, and caspases 3, 8, and 9 were measured. Heart-to-body weight ratio was increased in SHR vs. WKY (P < 0.05), concomitant with increased calcineurin mRNA (P < 0.05). There was a rightward shift in the LV/PV (P < 0.05) and a reduction in systolic elastance (E(s)) in SHR vs. WKY. Exercise training corrected E(s) in SHR (P < 0.05) but had no effect on the LV/PV in WKY. Caspase 3 was increased in SHR-SED relative to WKY-SED, while Bad(Pi,) c-IAP, and x-IAP were significantly lower in SHR relative to WKY (P < 0.05). Exercise training increased Bad(Pi) in both WKY and SHR but did not alter caspase 9 activity in either group. While caspase 3 activity was increased with training in WKY (P < 0.05), it was unchanged with training in SHR. We conclude that moderate levels of regular aerobic exercise attenuate systolic dysfunction early in the compensatory phase of hypertrophy, and that a differential phenotypical response to moderate-intensity exercise exists between WKY and SHR.


Subject(s)
Heart/physiopathology , Hypertension/physiopathology , Hypertension/therapy , Physical Conditioning, Animal/physiology , Systole/physiology , Animals , Apoptosis/genetics , Apoptosis/physiology , Biomarkers/metabolism , Calcineurin/genetics , Caspases/metabolism , Female , Hemodynamics , Hypertension/genetics , Hypertension/pathology , Myocardium/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Signal Transduction
2.
Am J Physiol Heart Circ Physiol ; 297(4): H1361-8, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19666835

ABSTRACT

We investigated how exercise training superimposed on chronic hypertension impacted left ventricular remodeling. Cardiomyocyte hypertrophy, apoptosis, and proliferation in hearts from female spontaneously hypertensive rats (SHRs) were examined. Four-month-old SHR animals were placed into a sedentary group (SHR-SED; n = 18) or a treadmill running group (SHR-TRD, 20 m/min, 1 h/day, 5 days/wk, 12 wk; n = 18). Age-matched, sedentary Wistar Kyoto (WKY) rats were controls (n = 18). Heart weight was greater in SHR-TRD vs. both WKY (P < 0.01) and SHR-SED (P < 0.05). Morphometric-derived left ventricular anterior, posterior, and septal wall thickness were increased in SHR-SED relative to WKY and augmented in SHR-TRD. Cardiomyocyte surface area, length, and width were increased in SHR-SED relative to WKY and further increased in SHR-TRD. Calcineurin abundance was increased in SHR-SED vs. WKY (P < 0.001) and attenuated in SHR-TRD relative to SHR-SED (P < 0.05). Protein abundance and mRNA of Akt was not different among groups. The rate of apoptosis was increased in SHR-SED relative to WKY and mitigated in SHR-TRD. The abundance of Ki-67(+) cells across groups was not statistically different across groups. The abundance of cardiac progenitor cells (c-Kit(+) cells) was increased in SHR-TRD relative to WKY. These data suggest that exercise training superimposed on hypertension augmented cardiomyocyte hypertrophy, despite attenuating calcineurin abundance. Exercise training also mitigated apoptosis in hypertension and showed a tendency to enhance the abundance of cardiac progenitor cells, resulting in a more favorable cardiomyocyte number in the exercise-trained hypertensive heart.


Subject(s)
Cardiomegaly/etiology , Hypertension/physiopathology , Physical Exertion , Ventricular Function, Left , Ventricular Remodeling , Animals , Apoptosis , Calcineurin/metabolism , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Cell Proliferation , Cell Size , Chronic Disease , Disease Models, Animal , Female , Hypertension/complications , Hypertension/metabolism , Hypertension/pathology , In Situ Nick-End Labeling , Ki-67 Antigen/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-kit/metabolism , RNA, Messenger/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Stem Cells/metabolism , Stem Cells/pathology
3.
Am J Physiol Heart Circ Physiol ; 293(5): H3122-9, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17827263

ABSTRACT

Calcineurin, a Ca(2+)-regulated protein phosphatase, links myocardial Ca(2+) signaling with hypertrophic gene transcription. Calcineurin abundance increases in pressure-overload hypertrophy and may reduce agonist-mediated phospholamban (PLB) phosphorylation to underlie blunted beta-adrenergic receptor (beta-AR) responsiveness in hypertension. This hypothesis was tested by measuring the effects of calcineurin inhibition on changes in cardiac contractility caused by beta-adrenergic stimulation in spontaneously hypertensive rats (SHR). Female SHR (age: 7 mo) and age-matched female Wistar-Kyoto rats (WKY) were studied. Heart weight-to-body weight ratio (P < 0.01) and systolic blood pressure (P < 0.01) were greater in SHR compared with WKY and were associated with increased myocardial calcineurin mRNA (CnAbeta) and activity (P < 0.05). beta-AR stimulation with isoproterenol (Iso) increased calcineurin activity (P < 0.05) in both WKY and SHR hearts, and this activity was suppressed with cyclosporin A (CsA) treatment. In SHR, CsA improved left ventricular whole heart and isolated myocyte beta-AR responsiveness by normalizing PLB phosphorylation at Ser(16) and Thr(17) (P < 0.05). These CsA-induced, PLB-mediated effects were associated with an augmentation in cardiomyocyte peak Ca(2+) and a reduced rate (time constant of isovolumic pressure relaxation, tau) and magnitude of diastolic Ca(2+) during beta-AR stimulation. In conclusion, CsA normalized the blunted beta-AR responsiveness associated with hypertension, in part, by mitigating calcineurin activity while improving PLB phosphorylation and subsequent sarcoplasmic reticulum Ca(2+) regulation.


Subject(s)
Calcineurin/metabolism , Calcium Signaling , Calcium/metabolism , Hypertension/metabolism , Myocytes, Cardiac/metabolism , Receptors, Adrenergic, beta/metabolism , Animals , Cells, Cultured , Female , Phosphorylation , Rats , Rats, Inbred SHR , Rats, Inbred WKY
4.
J Appl Physiol (1985) ; 103(1): 353-8, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17431084

ABSTRACT

Hypertension and exercise independently induce left ventricular (LV) remodeling and alter LV function. The purpose of this study was to determine systolic and diastolic LV pressure-volume relationships (LV-PV) in spontaneously hypertensive rats (SHR) with and without LV hypertrophy, and to determine whether 6 mo of exercise training modified the LV-PV in SHR. Four-month-old female SHR (n = 20), were assigned to a sedentary (SHR-SED) or treadmill-trained (SHR-TRD) group (approximately 60% peak O2 consumption, 5 days/wk, 6 mo), while age-matched female Wistar-Kyoto rats (WKY; n = 13) served as normotensive controls. The LV-PV was determined using a Langendorff isolated heart preparation at 4 (no hypertrophy: WKY, n = 5; SHR, n = 5) and 10 mo of age (hypertrophy: WKY, n = 8; SHR-SED, n = 8; SHR-TRD, n = 7). At 4 mo, the LV-PV in SHR was similar to that observed in WKY controls. However, at 10 mo of age, a rightward shift in the LV-PV occurred in SHR. Exercise training did not alter the extent of the shift in the LV-PV relative to SHR-SED. Relative systolic function, i.e., relative systolic elastance, was approximately 50% lower in SHR than WKY at 10 mo of age (P < 0.05). Doppler-derived LV filling parameters [early wave (E), atrial wave (A), and the E/A ratio] were similar between groups. LV capacitance was increased in SHR at 10 mo (P < 0.05), whereas LV diastolic chamber stiffness was similar between groups at 10 mo. Hypertrophic remodeling at 10 mo of age in female SHR is manifest with relative systolic decompensation and normal LV diastolic function. Exercise training did not alter the LV-PV in SHR.


Subject(s)
Hypertension/complications , Hypertrophy, Left Ventricular/complications , Myocardium/pathology , Physical Exertion , Ventricular Dysfunction, Left/physiopathology , Ventricular Remodeling , Aging , Animals , Blood Pressure , Disease Models, Animal , Disease Progression , Echocardiography , Female , Heart Rate , Hypertension/pathology , Hypertension/physiopathology , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Myocardial Contraction , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Systole , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/pathology , Ventricular Pressure
5.
Med Sci Sports Exerc ; 38(5): 847-55, 2006 May.
Article in English | MEDLINE | ID: mdl-16672836

ABSTRACT

PURPOSE: We tested how hypertension-induced compensated hypertrophy, both alone and coupled with exercise training, affects left ventricular (LV) Ca(2+) responsiveness during acidosis. METHODS: Four-month-old female, spontaneously hypertensive rats (SHR) (N = 23) were assigned to a sedentary (SHR-SED) or treadmill-trained (SHR-TRD) group (60% VO(2peak), 5 d.wk(-1), 6 months), while Wistar-Kyoto rats (WKY) (N = 12) served as normotensive controls. LV performance was established in response to supraphysiologic Ca(2+) infusion (4 mmol.L(-1)) alone and concomitant with isoproterenol (ISO) (1 x 10 mol.L(-1)) at pH 7.4 and 6.8. RESULTS: HR, rate-pressure product (RPP), and blood pressure were greater in SHR than in WKY (P < 0.05). HR and RPP were attenuated with training. Heart weight and LV anterior wall thickness (diastole) were increased in SHR relative to WKY (P < 0.05) and augmented with training. ISO + 4 mmol.L(-1) [Ca]o resulted in similar LV performance at pH 7.4. At pH 6.8, LV developed pressure was greater in both SHR groups (P < 0.05) versus WKY rats and a twofold increase in the [Ca(2+)]o rescued LV performance to the greatest extent in SHR-TRD. During acidosis, the added stimulus of ISO coupled with elevated [Ca(2+)](o) improved WKY LV performance to near baseline (P < 0.05). Neither elevated [Ca(2+)](o) nor ISO was effective in rescuing LV performance in SHR-SED during acidosis. Phospholamban phosphorylation at Ser(16) and Thr(17) residues were positively correlated with LV functional recovery. Regulatory proteins such as the Na(+)/H(+) exchanger, Na(+)/Ca(2+) exchanger, and the L-type Ca(+) channel were not correlated with LV function. CONCLUSION: Myocardial tolerance to acidosis is improved during the adaptive phase of compensatory hypertrophy. Furthermore, exercise training in SHR induced a myocardial phenotype that preserved Ca(2+) responsiveness during acidosis.


Subject(s)
Acidosis/physiopathology , Calcium/pharmacology , Hypertrophy, Left Ventricular/physiopathology , Physical Conditioning, Animal , Acidosis/blood , Animals , Blood Pressure , Calcium/administration & dosage , Female , Heart Rate , Isoproterenol/administration & dosage , Pennsylvania , Rats , Rats, Inbred SHR , Rats, Inbred WKY
6.
J Appl Physiol (1985) ; 100(2): 541-7, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16223983

ABSTRACT

The purpose of this study was to examine whether exercise training, superimposed on compensated-concentric hypertrophy, could increase myocardial hypoperfusion-reperfusion (H/R) tolerance. Female Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) (age: 4 mo; N = 40) were placed into a sedentary (SED) or exercise training (TRD) group (treadmill running; 25 m/min, 1 h/day, 5 days/wk for 16 wk). Four groups were studied: WKY-SED (n = 10), WKY-TRD (n = 10), SHR-SED (n = 10), and SHR-TRD (n = 10). Blood pressure and heart rate were determined, and in vitro isolated heart performance was measured with a retrogradely perfused, Langendorff isovolumic preparation. The H/R protocol consisted of a 75% reduction in coronary flow for 17 min followed by 30 min of reperfusion. Although the rate-pressure product was significantly elevated in SHR relative to WKY, training-induced bradycardia reduced the rate-pressure product in SHR-TRD (P < 0.05) without an attenuation in systolic blood pressure. Heart-to-body weight ratio was greater in both groups of SHR vs. WKY-SED (P < 0.001). Absolute and relative myocardial tolerance to H/R was greater in WKY-TRD and both groups of SHR relative to WKY-SED (P < 0.05). Endurance training superimposed on hypertension-induced compensated hypertrophy conferred no further cardioprotection to H/R. Postreperfusion 72-kDa heat shock protein abundance was enhanced in WKY-TRD and both groups of SHR relative to WKY-SED (P < 0.05) and was highly correlated with absolute left ventricular functional recovery during reperfusion (R2= 0.86, P < 0.0001). These data suggest that both compensated hypertrophy associated with short-term hypertension and endurance training individually improved H/R and that increased postreperfusion 72-kDa heat shock protein abundance was, in part, associated with the cardioprotective phenotype observed in this study.


Subject(s)
Myocardial Reperfusion Injury/prevention & control , Physical Conditioning, Animal/physiology , Animals , Blood Pressure , Cardiomegaly/etiology , Cardiomegaly/metabolism , Cardiomegaly/physiopathology , Disease Models, Animal , Female , HSP72 Heat-Shock Proteins/metabolism , Heart Rate , Heart Ventricles/metabolism , Hypertension/complications , Hypertension/metabolism , Hypertension/physiopathology , Myocardial Contraction/physiology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Myocardium/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/prevention & control , Ventricular Pressure
7.
Circulation ; 111(25): 3420-8, 2005 Jun 28.
Article in English | MEDLINE | ID: mdl-15967848

ABSTRACT

BACKGROUND: Cardiac responses to beta-adrenergic receptor stimulation are depressed with pressure overload-induced cardiac hypertrophy. We investigated whether exercise training could modify beta-adrenergic receptor responsiveness in a model of spontaneous hypertension by modifying the beta-adrenergic receptor desensitizing kinase GRK2 and the abundance and phosphorylation of some key Ca2+ cycling proteins. METHODS AND RESULTS: Female spontaneously hypertensive rats (SHR; age, 4 months) were placed into a treadmill running (SHR-TRD; 20 m/min, 1 h/d, 5 d/wk, 12 weeks) or sedentary group (SHR-SED). Age-matched Wistar Kyoto (WKY) rats were controls. Mean blood pressure was higher in SHR versus WKY (P<0.01) and unaltered with exercise. Left ventricular (LV) diastolic anterior and posterior wall thicknesses were greater in SHR than WKY (P<0.001) and augmented with training (P<0.01). Langendorff LV performance was examined during isoproterenol (ISO) infusions (1x10(-10) to 1x10(-7) mol/L) and pacing stress (8.5 Hz). The peak LV developed pressure/ISO dose response was shifted rightward 100-fold in SHR relative to WKY. The peak ISO LV developed pressure response was similar between WKY and SHR-SED and increased in SHR-TRD (P<0.05). SHR-TRD showed the greatest lusitropic response to ISO (P<0.05) and offset the pacing-induced increase in LV end-diastolic pressure and the time constant of isovolumic relaxation (tau) observed in WKY and SHR-SED. Improved cardiac responses to ISO in SHR-TRD were associated with normalized myocardial levels of GRK2 (P<0.05). SHR displayed increased L-type Ca2+ channel and sodium calcium exchanger abundance compared with WKY (P<0.001). Training increased ryanodine receptor phosphorylation and phospholamban phosphorylation at both the Ser16 and Thr17 residues (P<0.05). CONCLUSIONS: Exercise training in hypertension improves the inotropic and lusitropic responsiveness to beta-adrenergic receptor stimulation despite augmenting LV wall thickness. A lower GRK2 abundance and an increased phosphorylation of key Ca2+ cycling proteins may be responsible for the above putative effects.


Subject(s)
Adrenergic beta-Agonists/pharmacology , Exercise Therapy/methods , Hypertension/therapy , Animals , Blood Pressure , Calcium Channels, T-Type/analysis , Female , G-Protein-Coupled Receptor Kinase 2 , Heart Ventricles/chemistry , Hypertrophy, Left Ventricular , In Vitro Techniques , Isoproterenol/pharmacology , Myocardial Contraction , Phosphorylation , Rats , Rats, Inbred SHR , Rats, Wistar , Sodium-Calcium Exchanger/analysis , beta-Adrenergic Receptor Kinases/analysis
SELECTION OF CITATIONS
SEARCH DETAIL