Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Drug Deliv Rev ; 209: 115305, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626860

ABSTRACT

Cystic fibrosis (CF) is a complex genetic respiratory disorder that necessitates innovative gene delivery strategies to address the mutations in the gene. This review delves into the promises and challenges of non-viral gene delivery for CF therapy and explores strategies to overcome these hurdles. Several emerging technologies and nucleic acid cargos for CF gene therapy are discussed. Novel formulation approaches including lipid and polymeric nanoparticles promise enhanced delivery through the CF mucus barrier, augmenting the potential of non-viral strategies. Additionally, safety considerations and regulatory perspectives play a crucial role in navigating the path toward clinical translation of gene therapy.


Subject(s)
Cystic Fibrosis , Gene Transfer Techniques , Genetic Therapy , Nanoparticles , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Humans , Genetic Therapy/methods , Nanoparticles/chemistry , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics
2.
Proc Natl Acad Sci U S A ; 121(11): e2307813120, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38437570

ABSTRACT

Lipid nanoparticles (LNPs) largely rely on ionizable lipids to yield successful nucleic acid delivery via electrostatic disruption of the endosomal membrane. Here, we report the identification and evaluation of ionizable lipids containing a thiophene moiety (Thio-lipids). The Thio-lipids can be readily synthesized via the Gewald reaction, allowing for modular lipid design with functional constituents at various positions of the thiophene ring. Through the rational design of ionizable lipid structure, we prepared 47 Thio-lipids and identified some structural criteria required in Thio-lipids for efficient mRNA (messenger RNA) encapsulation and delivery in vitro and in vivo. Notably, none of the tested lipids have a pH-response profile like traditional ionizable lipids, potentially due to the electron delocalization in the thiophene core. Placement of the tails and localization of the ionizable headgroup in the thiophene core can endow the nanoparticles with the capability to reach various tissues. Using high-throughput formulation and barcoding techniques, we optimized the formulations to select two top lipids-20b and 29d-and investigated their biodistribution in mice. Lipid 20b enabled LNPs to transfect the liver and spleen, and 29d LNP transfected the lung and spleen. Unexpectedly, LNP with lipid 20b was especially potent in mRNA delivery to the retina with no acute toxicity, leading to the successful delivery to the photoreceptors and retinal pigment epithelium in non-human primates.


Subject(s)
Lung , Retina , Animals , Mice , Tissue Distribution , RNA, Messenger/genetics , Lipids
3.
J Org Chem ; 87(14): 8871-8883, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35759553

ABSTRACT

A Ni-catalyzed (4 + 2) cycloaddition of bicyclic 3-azetidinones and alkynes was developed to access indolizidine and quinolizidine alkaloids. A key element was the development of a diazomethylation procedure that allows the efficient synthesis of bicyclic azetidinones from pyroglutamic and 6-oxopiperidine-2-carboxylic acid. A ligand screening led to improved regioselectivity and enantiopurity during the Ni-catalyzed (4 + 2) cycloaddition. This straightforward methodology was leveraged to synthesize (+)-ipalbidine, (+)-septicine, (+)-seco-antofine, and (+)-7-methoxy-julandine.


Subject(s)
Alkaloids , Indolizidines , Quinolizidines , Catalysis , Cycloaddition Reaction , Nickel
4.
Org Lett ; 22(3): 924-928, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31928010

ABSTRACT

A Ni-catalyzed (4 + 2) cycloaddition of alkynes and azetidinones toward piperidinones was used as key reaction in the enantioselective synthesis of naturally occurring indolizidine alkaloids. The reaction benefits from the use of an easily accessible azetidinone as an advanced and divergent intermediate to build the indolizidine core. This methodology has been applied in the total syntheses of (+)-septicine, (+)-ipalbidine, and (+)-seco-antofine to illustrate the applicability of the general approach.

5.
J Org Chem ; 82(1): 234-242, 2017 01 06.
Article in English | MEDLINE | ID: mdl-27957836

ABSTRACT

Iron complexes bound by redox-active pyridine dialdimine (PDAI) ligands catalyze the cycloaddition of two terminal alkynes and one cyanamide. The reaction is both chemo- and regioselective, as only 4,6-disubstituted 2-aminopyridine products are formed in moderate to high yields. Isolation of an iron azametallacycle (4) suggests that catalyst deactivation occurs with a large excess of cyanamide over longer reaction times. Fe-catalyzed cycloaddition allowed for a straightforward synthesis of a variety of aminopyridines, including known estrogen receptor ligands.


Subject(s)
Alkynes/chemistry , Aminopyridines/chemical synthesis , Cyanamide/chemistry , Iron Compounds/chemistry , Aminopyridines/chemistry , Catalysis , Cycloaddition Reaction , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...