Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Blood Cancer J ; 14(1): 72, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658558

ABSTRACT

NRAS and KRAS activating point mutations are present in 10-30% of myeloid malignancies and are often associated with a proliferative phenotype. RAS mutations harbor allele-specific structural and biochemical properties depending on the hotspot mutation, contributing to variable biological consequences. Given their subclonal nature in most myeloid malignancies, their clonal architecture, and patterns of cooperativity with other driver genetic alterations may potentially have a direct, causal influence on the prognosis and treatment of myeloid malignancies. RAS mutations overall tend to be associated with poor clinical outcome in both chronic and acute myeloid malignancies. Several recent prognostic scoring systems have incorporated RAS mutational status. While RAS mutations do not always act as independent prognostic factors, they significantly influence disease progression and survival. However, their clinical significance depends on the type of mutation, disease context, and treatment administered. Recent evidence also indicates that RAS mutations drive resistance to targeted therapies, particularly FLT3, IDH1/2, or JAK2 inhibitors, as well as the venetoclax-azacitidine combination. The investigation of novel therapeutic strategies and combinations that target multiple axes within the RAS pathway, encompassing both upstream and downstream components, is an active field of research. The success of direct RAS inhibitors in patients with solid tumors has brought renewed optimism that this progress will be translated to patients with hematologic malignancies. In this review, we highlight key insights on RAS mutations across myeloid malignancies from the past decade, including their prevalence and distribution, cooperative genetic events, clonal architecture and dynamics, prognostic implications, and therapeutic targeting.


Subject(s)
Mutation , Humans , Prognosis , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/therapy , Myeloproliferative Disorders/drug therapy , Molecular Targeted Therapy , Proto-Oncogene Proteins p21(ras)/genetics
4.
Bull Cancer ; 110(11): 1129-1140, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37391357

ABSTRACT

Therapy-related myelodysplastic syndromes (t-MDS) represent a heterogeneous group of malignancies that arise as a late complication of prior exposure to chemotherapy and/or radiotherapy administered for a primary condition. T-MDS account for approximately 20% of all MDS and are characterized by resistance to current treatment strategies and poor prognosis. Our understanding of t-MDS pathogenesis has considerably improved over the last 5 years with the availability of deep sequencing technologies. T-MDS development is now considered as a multifactorial process resulting from complex interactions between an underlying germline genetic susceptibility, the stepwise acquisition of somatic mutations in hematopoietic stem cells, the clonal selection pressure exerted by cytotoxic therapies, and alterations of the bone marrow microenvironment. The survival of patients with t-MDS is generally poor. This can be explained by both patient-related factors including poor performance status and less tolerance to treatment and disease-related factors, such as the presence of chemoresistant clones, high-risk cytogenetic alterations and molecular features (e.g. high frequency of TP53 mutations). Around 50% of t-MDS patients are classified as high/very high risk based on IPSS-R or IPSS-M scores, versus 30% in de novo MDS. Long-term survival is only achieved in a minority of t-MDS patients who receive allogeneic stem cell transplantation, but the development of novel drugs may open new therapeutic opportunities, especially in unfit patients. Further investigations are needed to improve the identification of patients at higher risk of developing t-MDS and determine whether primary disease treatment can be modified to prevent the occurrence of t-MDS.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Neoplasms, Second Primary , Humans , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/therapy , Leukemia, Myeloid, Acute/genetics , Bone Marrow , Neoplasms, Second Primary/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Prognosis , Tumor Microenvironment
5.
JCO Precis Oncol ; 7: e2200583, 2023 03.
Article in English | MEDLINE | ID: mdl-36862966

ABSTRACT

PURPOSE: High-risk clonal hematopoiesis (CH) is frequently incidentally found in patients with solid tumors undergoing plasma cell-free DNA sequencing. Here, we aimed to determine if the incidental detection of high-risk CH by liquid biopsy may reveal occult hematologic malignancies in patients with solid tumors. MATERIALS AND METHODS: Adult patients with advanced solid cancers enrolled in the Gustave Roussy Cancer Profiling study (ClinicalTrials.gov identifier: NCT04932525) underwent at least one liquid biopsy (FoundationOne Liquid CDx). Molecular reports were discussed within the Gustave Roussy Molecular Tumor Board (MTB). Potential CH alterations were observed, and patients referred to hematology consultation in the case of pathogenic mutations in JAK2, MPL, or MYD88, irrespective of the variant allele frequency (VAF), or in DNMT3A, TET2, ASXL1, IDH1, IDH2, SF3B1, or U2AF1 with VAF ≥ 10%, while also considering patient cancer-related prognosis. TP53 mutations were discussed case-by-case. RESULTS: Between March and October 2021, 1,416 patients were included. One hundred ten patients (7.7%) carried at least one high-risk CH mutation: DNMT3A (n = 32), JAK2 (n = 28), TET2 (n = 19), ASXL1 (n = 18), SF3B1 (n = 5), IDH1 (n = 4), IDH2 (n = 3), MPL (n = 3), and U2AF1 (n = 2). The MTB advised for hematologic consultation in 45 patients. Overall, 9 patients of 18 actually addressed had confirmed hematologic malignancies that were occult in six patients: two patients had myelodysplastic syndrome, two essential thrombocythemia, one a marginal lymphoma, and one a Waldenström macroglobulinemia. The other three patients were already followed up in hematology. CONCLUSION: The incidental findings of high-risk CH through liquid biopsy may trigger diagnostic hematologic tests and reveal an occult hematologic malignancy. Patients should have a multidisciplinary case-by-case evaluation.


Subject(s)
Circulating Tumor DNA , Hematologic Neoplasms , Hematology , Neoplasms, Unknown Primary , Adult , Humans , Circulating Tumor DNA/genetics , Splicing Factor U2AF , Hematologic Neoplasms/genetics , Transcription Factors , Liquid Biopsy
6.
Leukemia ; 36(3): 656-663, 2022 03.
Article in English | MEDLINE | ID: mdl-34615986

ABSTRACT

The independent prognostic impact of specific dysplastic features in acute myeloid leukemia (AML) remains controversial and may vary between genomic subtypes. We apply a machine learning framework to dissect the relative contribution of centrally reviewed dysplastic features and oncogenetics in 190 patients with de novo AML treated in ALFA clinical trials. One hundred and thirty-five (71%) patients achieved complete response after the first induction course (CR). Dysgranulopoiesis, dyserythropoiesis and dysmegakaryopoiesis were assessable in 84%, 83% and 63% patients, respectively. Multi-lineage dysplasia was present in 27% of assessable patients. Micromegakaryocytes (q = 0.01), hypolobulated megakaryocytes (q = 0.08) and hyposegmented granulocytes (q = 0.08) were associated with higher ELN-2017 risk. Using a supervised learning algorithm, the relative importance of morphological variables (34%) for the prediction of CR was higher than demographic (5%), clinical (2%), cytogenetic (25%), molecular (29%), and treatment (5%) variables. Though dysplasias had limited predictive impact on survival, a multivariate logistic regression identified the presence of hypolobulated megakaryocytes (p = 0.014) and micromegakaryocytes (p = 0.035) as predicting lower CR rates, independently of monosomy 7 (p = 0.013), TP53 (p = 0.004), and NPM1 mutations (p = 0.025). Assessment of these specific dysmegakarypoiesis traits, for which we identify a transcriptomic signature, may thus guide treatment allocation in AML.


Subject(s)
Antineoplastic Agents/therapeutic use , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Adult , Aged , Cytogenetic Analysis , Female , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Machine Learning , Male , Megakaryocytes/pathology , Middle Aged , Prognosis , Treatment Outcome
7.
Blood Adv ; 5(23): 5258-5268, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34625784

ABSTRACT

WT1 overexpression is frequently identified in acute myeloid leukemia (AML) and has been reported to be a potential marker for monitoring measurable residual disease (MRD). We evaluated the use of postinduction WT1 MRD level as a prognostic factor, as well as the interaction between postinduction WT1 MRD response and the effect of allogeneic stem cell transplantation (allo-SCT) in the first complete remission (CR). In the ALFA-0702 trial, patients with AML, aged 18 to 59, had a prospective quantification of WT1 MRD. The occurrence of a WT1 MRD ratio >2.5% in bone marrow or >0.5% in peripheral blood was defined as MRDhigh, and ratios below these thresholds were defined as MRDlow. The prognostic value of MRD after induction chemotherapy was assessed in 314 patients in first CR by comparing the risk of relapse, the relapse-free survival (RFS), and the overall survival (OS). Interaction between MRD response and the allo-SCT effect was evaluated in patients by comparing the influence of allo-SCT on the outcomes of patients with MRDhigh with those with MRDlow. The results showed that patients with MRDhigh after induction had a higher risk of relapse and a shorter RFS and OS. The MRD response remained of strong prognostic value in the subset of 225 patients with intermediate-/unfavorable-risk AML who were eligible for allo-SCT, because patients with MRDhigh had a significantly higher risk of relapse resulting in worse RFS and OS. The effect of allo-SCT was higher in patients with MRDlow than in those with MRDhigh, but not significantly different. The early WT1 MRD response highlights a population of high-risk patients in need of additional therapy.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Adolescent , Adult , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/therapy , Middle Aged , Neoplasm, Residual , Prognosis , WT1 Proteins , Young Adult
8.
Hemasphere ; 5(9): e632, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34423258

ABSTRACT

Definition of therapy-related myeloid neoplasms (TRMN) is only based on clinical history of exposure to leukemogenic therapy. No specific molecular classification combining therapy-related acute myeloid leukemia and therapy-related myelodysplastic syndromes has been proposed. We aimed to describe the molecular landscape of TRMN at diagnosis, among 77 patients with previous gynecologic and breast cancer with a dedicated next-generation sequencing panel covering 74 genes. We investigated the impact of clonal hematopoiesis of indeterminate potential-associated mutations (CHIP-AMs defined as presence at TRMN stage of mutations described in CHIP with a frequency >1%) on overall survival (OS) and the clinical relevance of a modified genetic ontogeny-based classifier that categorized patients in 3 subgroups. The most frequently mutated genes were TP53 (31%), DNMT3A (19%), IDH1/2 (13%), NRAS (13%), TET2 (12%), NPM1 (10%), PPM1D (9%), and PTPN11 (9%). CHIP-AMs were detected in 66% of TRMN patients, with no impact on OS. Yet, patients with CHIP-AM were older and had a longer time interval between solid tumor diagnosis and TRMN. According to our modified ontogeny-based classifier, we observed that the patients with TP53 or PPM1D mutations had more treatment lines and complex karyotypes, the "MDS-like" patients were older with more gene mutations, while patients with "De novo/pan-AML" mutations were younger with more balanced chromosomal translocations. Median OS within each subgroup was 7.5, 14.5, and 25.2 months, respectively, with statistically significant difference in multivariate analysis. These results support the integration of cytogenetic and molecular markers into the future TRMN classification to reflect the biological diversity of TRMN and its impact on outcomes.

9.
Leukemia ; 35(10): 2739-2751, 2021 10.
Article in English | MEDLINE | ID: mdl-34175902

ABSTRACT

Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN). Median overall survival of this aggressive myeloid malignancy is only 2-3 years, with a 15-30% risk of acute leukemic transformation. The paucity of clinical trials specifically designed for CMML has made therapeutic management of CMML patients challenging. As a result, treatment paradigms for CMML patients are largely borrowed from MDS and MPN. The standard of care still relies on hydroxyurea, hypomethylating agents (HMA), and allogeneic stem cell transplantation, this latter option remaining the only potentially curative therapy. To date, approved drugs for CMML treatment are HMA, including azacitidine, decitabine, and more recently the oral combination of decitabine and cedazuridine. However, HMA treatment does not meaningfully alter the natural course of this disease. New treatment approaches for improving CMML-associated cytopenias or targeting the CMML malignant clone are emerging. More than 25 therapeutic agents are currently being evaluated in phase 1 or phase 2 clinical trials for CMML and other myeloid malignancies, often in combination with a HMA backbone. Several novel agents, such as sotatercept, ruxolitinib, lenzilumab, and tagraxofusp have shown promising clinical efficacy in CMML. Current evidence supports the idea that effective treatment in CMML will likely require combination therapy targeting multiple pathways, which emphasizes the need for additional new therapeutic options. This review focuses on recent therapeutic advances and innovative treatment strategies in CMML, including global and molecularly targeted approaches. We also discuss what may help to make progress in the design of rationally derived and disease-modifying therapies for CMML.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia, Myelomonocytic, Chronic/drug therapy , Animals , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Combined Modality Therapy/methods , DNA Methylation/drug effects , Hematopoietic Stem Cell Transplantation/methods , Humans , Hydroxyurea/pharmacology
10.
Blood Cancer Discov ; 2(3): 250-265, 2021 05.
Article in English | MEDLINE | ID: mdl-34027417

ABSTRACT

Thalidomide analogs exert their therapeutic effects by binding to the CRL4CRBN E3 ubiquitin ligase, promoting ubiquitination and subsequent proteasomal degradation of specific protein substrates. Drug-induced degradation of IKZF1 and IKZF3 in B-cell malignancies demonstrates the clinical utility of targeting disease-relevant transcription factors for degradation. Here, we found that avadomide (CC-122) induces CRBN-dependent ubiquitination and proteasomal degradation of ZMYM2 (ZNF198), a transcription factor involved in balanced chromosomal rearrangements with FGFR1 and FLT3 in aggressive forms of hematologic malignancies. The minimal drug-responsive element of ZMYM2 is a zinc-chelating MYM domain and is contained in the N-terminal portion of ZMYM2 that is universally included in the derived fusion proteins. We demonstrate that avadomide has the ability to induce proteasomal degradation of ZMYM2-FGFR1 and ZMYM2-FLT3 chimeric oncoproteins, both in vitro and in vivo. Our findings suggest that patients with hematologic malignancies harboring these ZMYM2 fusion proteins may benefit from avadomide treatment.


Subject(s)
Hematologic Neoplasms , Thalidomide , DNA-Binding Proteins , Hematologic Neoplasms/drug therapy , Humans , Lenalidomide/pharmacology , Oncogene Proteins , Transcription Factors/metabolism
11.
Leukemia ; 35(6): 1552-1562, 2021 06.
Article in English | MEDLINE | ID: mdl-33714974

ABSTRACT

Chronic myelomonocytic leukemia (CMML) is a rare, heterogeneous myeloid malignancy classified as a myelodysplastic syndromes/myeloproliferative neoplasm (MDS/MPN) overlap syndrome by the World Health Organization (WHO). Its initial presentation can be incidental or associated with myelodysplastic or myeloproliferative symptoms and up to 20% of patients harbor a concurrent inflammatory or autoimmune condition. Persistent monocytosis is the hallmark of CMML but diagnosis can be challenging. Increased understanding of human monocyte subsets, chromosomal abnormalities, and somatic gene mutations have led to more accurate diagnosis and improved prognostication. A number of risk stratification systems have been developed and validated but using those that incorporate molecular information such as CMML Prognostic Scoring System (CPSS)-Mol, Mayo Molecular, and Groupe Francophone des Myelodysplasies (GFM) are preferred. Symptom-directed approaches forms the basis of CMML management. Outcomes vary substantially depending on risk ranging from observation for a number of years to rapidly progressive disease and acute myeloid leukemia (AML) transformation. Patients who are low risk but with symptoms from cytopenias or proliferative features such as splenomegaly may be treated with hypomethylating agents (HMAs) or cytoreductive therapy, respectively, with the goal of durable symptoms control. Allogeneic hematopoietic cell transplantation should be considered for intermediate to high risk patients. The lack of effective pharmaceutical options has generated interest in novel therapeutics for this disease, and early phase clinical trial results are promising.


Subject(s)
Leukemia, Myelomonocytic, Chronic/diagnosis , Leukemia, Myelomonocytic, Chronic/therapy , Animals , Combined Modality Therapy , Disease Management , Humans
12.
Nat Commun ; 11(1): 1044, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32098966

ABSTRACT

The inclusion of familial myeloid malignancies as a separate disease entity in the revised WHO classification has renewed efforts to improve the recognition and management of this group of at risk individuals. Here we report a cohort of 86 acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) families with 49 harboring germline variants in 16 previously defined loci (57%). Whole exome sequencing in a further 37 uncharacterized families (43%) allowed us to rationalize 65 new candidate loci, including genes mutated in rare hematological syndromes (ADA, GP6, IL17RA, PRF1 and SEC23B), reported in prior MDS/AML or inherited bone marrow failure series (DNAH9, NAPRT1 and SH2B3) or variants at novel loci (DHX34) that appear specific to inherited forms of myeloid malignancies. Altogether, our series of MDS/AML families offer novel insights into the etiology of myeloid malignancies and provide a framework to prioritize variants for inclusion into routine diagnostics and patient management.


Subject(s)
Germ-Line Mutation , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Adaptor Proteins, Signal Transducing/genetics , Adenosine Deaminase/genetics , Axonemal Dyneins/genetics , Cohort Studies , Humans , Nonsense Mediated mRNA Decay , Pedigree , Perforin/genetics , Platelet Membrane Glycoproteins/genetics , RNA Helicases/genetics , Receptors, Interleukin-17/genetics , Vesicular Transport Proteins/genetics , Exome Sequencing
13.
Blood ; 135(13): 1032-1043, 2020 03 26.
Article in English | MEDLINE | ID: mdl-31961934

ABSTRACT

Genes encoding the RNA splicing factors SF3B1, SRSF2, and U2AF1 are subject to frequent missense mutations in clonal hematopoiesis and diverse neoplastic diseases. Most "spliceosomal" mutations affect specific hotspot residues, resulting in splicing changes that promote disease pathophysiology. However, a subset of patients carries spliceosomal mutations that affect non-hotspot residues, whose potential functional contributions to disease are unstudied. Here, we undertook a systematic characterization of diverse rare and private spliceosomal mutations to infer their likely disease relevance. We used isogenic cell lines and primary patient materials to discover that 11 of 14 studied rare and private mutations in SRSF2 and U2AF1 induced distinct splicing alterations, including partially or completely phenocopying the alterations in exon and splice site recognition induced by hotspot mutations or driving "dual" phenocopies that mimicked 2 co-occurring hotspot mutations. Our data suggest that many rare and private spliceosomal mutations contribute to disease pathogenesis and illustrate the utility of molecular assays to inform precision medicine by inferring the potential disease relevance of newly discovered mutations.


Subject(s)
Genetic Association Studies , Mutation , Penetrance , Phenotype , Spliceosomes/genetics , Cell Line, Tumor , Computational Biology/methods , Exons , Gene Expression Profiling , Humans , RNA Splice Sites , RNA Splicing , RNA Splicing Factors/genetics , Transcriptome
14.
Haematologica ; 104(8): 1565-1571, 2019 08.
Article in English | MEDLINE | ID: mdl-30733271

ABSTRACT

High-risk myelodysplastic syndrome/acute myeloid leukemia patients have a very poor survival after azacitidine failure. Guadecitabine (SGI-110) is a novel subcutaneous hypomethylating agent which results in extended decitabine exposure. This multicenter phase II study evaluated the efficacy and safety of guadecitabine in high-risk myelodysplastic syndrome and low blast count acute myeloid leukemia patients refractory or relapsing after azacitidine. We included 56 patients with a median age of 75 years [Interquartile Range (IQR) 69-76]. Fifty-five patients received at least one cycle of guadecitabine (60 mg/m2/d subcutaneously days 1-5 per 28-day treatment cycles), with a median of 3 cycles (range, 0-27). Eight (14.3%) patients responded, including two complete responses; median response duration was 11.5 months. Having no or few identified somatic mutations was the only factor predicting response (P=0.035). None of the 11 patients with TP53 mutation responded. Median overall survival was 7.1 months, and 17.9 months in responders (3 of whom had overall survival >2 years). In multivariate analysis, IPSS-R (revised International Prognostic Scoring System) score other than very high (P=0.03) primary versus secondary azacitidine failure (P=0.01) and a high rate of demethylation in blood during the first cycle of treatment (P=0.03) were associated with longer survival. Thus, guadecitabine can be effective, sometimes yielding relatively prolonged survival, in a small proportion of high-risk myelodysplastic syndrome/low blast count acute myeloid leukemia patients who failed azacitidine. (Trial registered at clinicaltrials.gov identifier: 02197676).


Subject(s)
Azacitidine/analogs & derivatives , Azacitidine/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Myelodysplastic Syndromes/drug therapy , Aged , Female , Humans , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Male , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/mortality , Risk , Survival Analysis , Treatment Outcome
16.
Science ; 362(6414)2018 11 02.
Article in English | MEDLINE | ID: mdl-30385546

ABSTRACT

The small molecules thalidomide, lenalidomide, and pomalidomide induce the ubiquitination and proteasomal degradation of the transcription factors Ikaros (IKZF1) and Aiolos (IKZF3) by recruiting a Cys2-His2 (C2H2) zinc finger domain to Cereblon (CRBN), the substrate receptor of the CRL4CRBN E3 ubiquitin ligase. We screened the human C2H2 zinc finger proteome for degradation in the presence of thalidomide analogs, identifying 11 zinc finger degrons. Structural and functional characterization of the C2H2 zinc finger degrons demonstrates how diverse zinc finger domains bind the permissive drug-CRBN interface. Computational zinc finger docking and biochemical analysis predict that more than 150 zinc fingers bind the drug-CRBN complex in vitro, and we show that selective zinc finger degradation can be achieved through compound modifications. Our results provide a rationale for therapeutically targeting transcription factors that were previously considered undruggable.


Subject(s)
CYS2-HIS2 Zinc Fingers , Lenalidomide/pharmacology , Peptide Hydrolases/metabolism , Proteolysis/drug effects , Thalidomide/analogs & derivatives , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/drug effects , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , HEK293 Cells , Humans , Ikaros Transcription Factor/metabolism , Proteome/metabolism , Thalidomide/pharmacology
17.
Br J Haematol ; 182(6): 843-850, 2018 09.
Article in English | MEDLINE | ID: mdl-30004110

ABSTRACT

Isolated trisomy 8 (+8) is a frequent cytogenetic abnormality in the myelodysplastic syndromes (MDS), but its characteristics are poorly reported. We performed a retrospective study of 138 MDS patients with isolated +8, classified or reclassified as MDS (excluding MDS/myeloproliferative neoplasm). Myeloproliferative (MP) features were defined by the repeated presence of one of the following: white blood cell count >10 × 109 /l, myelemia (presence of circulating immature granulocytes with a predominance of more mature forms) >2%, palpable splenomegaly. Fifty-four patients (39·1%) had MP features: 28 at diagnosis, 26 were acquired during evolution. MP forms had more EZH2 (33·3% vs. 12·0% in non-MP, P = 0·047), ASXL1 (66·7% vs. 42·3%, P = 0·048) and STAG2 mutations (77·8% vs. 21·7%, P = 0·006). Median event-free survival (EFS) and overall survival (OS) were 25 and 27 months for patients with MP features at diagnosis, versus 28 (P = 0·15) and 39 months (P = 0·085) for those without MP features, respectively. Among the 57 patients who received hypomethylating agent (HMA), OS was lower in MP cases (13 months vs. 23 months in non-MP cases, P = 0.02). In conclusion, MP features are frequent in MDS with isolated +8. MP forms had more EZH2, ASXL1 and STAG2 mutations, responded poorly to HMA, and tended to have poorer survival than non-MP forms.


Subject(s)
Myelodysplastic Syndromes/genetics , Myeloproliferative Disorders/genetics , Trisomy/genetics , Adult , Aged , Antigens, Nuclear/genetics , Antimetabolites, Antineoplastic/adverse effects , Antimetabolites, Antineoplastic/therapeutic use , Cell Cycle Proteins , Chromosomes, Human, Pair 8/genetics , Disease Progression , Enhancer of Zeste Homolog 2 Protein/genetics , Female , Humans , Middle Aged , Myelodysplastic Syndromes/epidemiology , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/mortality , Repressor Proteins/genetics , Retrospective Studies , Survival Analysis
19.
EBioMedicine ; 31: 174-181, 2018 May.
Article in English | MEDLINE | ID: mdl-29728305

ABSTRACT

Somatic mutations contribute to the heterogeneous prognosis of chronic myelomonocytic leukemia (CMML). Hypomethylating agents (HMAs) are active in CMML, but analyses of small series failed to identify mutations predicting response or survival. We analyzed a retrospective multi-center cohort of 174 CMML patients treated with a median of 7 cycles of azacitidine (n = 68) or decitabine (n = 106). Sequencing data before treatment initiation were available for all patients, from Sanger (n = 68) or next generation (n = 106) sequencing. Overall response rate (ORR) was 52%, including complete response (CR) in 28 patients (17%). In multivariate analysis, ASXL1 mutations predicted a lower ORR (Odds Ratio [OR] = 0.85, p = 0.037), whereas TET2mut/ASXL1wt genotype predicted a higher CR rate (OR = 1.18, p = 0.011) independently of clinical parameters. With a median follow-up of 36.7 months, overall survival (OS) was 23.0 months. In multivariate analysis, RUNX1mut (Hazard Ratio [HR] = 2.00, p = .011), CBLmut (HR = 1.90, p = 0.03) genotypes and higher WBC (log10(WBC) HR = 2.30, p = .005) independently predicted worse OS while the TET2mut/ASXL1wt predicted better OS (HR = 0.60, p = 0.05). CMML-specific scores CPSS and GFM had limited predictive power. Our results stress the need for robust biomarkers of HMA activity in CMML and for novel treatment strategies in patients with myeloproliferative features and RUNX1 mutations.


Subject(s)
Azacitidine/analogs & derivatives , Azacitidine/administration & dosage , Core Binding Factor Alpha 2 Subunit , DNA-Binding Proteins , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Mutation , Proto-Oncogene Proteins , Repressor Proteins , Aged , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Decitabine , Dioxygenases , Female , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Male , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...