Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ChemElectroChem ; 5(4): 598-604, 2018 02.
Article in English | MEDLINE | ID: mdl-29577008

ABSTRACT

Supercapacitors are energy storage devices designed to operate at higher power densities than conventional batteries, but their energy density is still too low for many applications. Efforts are made to design new electrolytes with wider electrochemical windows than aqueous or conventional organic electrolytes in order to increase energy density. Ionic liquids (ILs) with wide electrochemical stability windows are excellent candidates to be employed as supercapacitor electrolytes. ILs containing tetracyanoborate anions [B(CN)4] offer wider electrochemical stability than conventional electrolytes and maintain a high ionic conductivity (6.9 mS cm-1). Herein, we report the use of ILs containing the [B(CN)4] anion for such an application. They presented a high maximum operating voltage of 3.7 V, and two-electrode devices demonstrate high specific capacitances even when operating at relatively high rates (ca. 20 F g-1 @ 15 A g-1). This supercapacitor stored more energy and operated at a higher power at all rates studied when compared with cells using a commonly studied ILs.

2.
Phys Chem Chem Phys ; 19(25): 16867-16874, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28627530

ABSTRACT

We investigated the use of fluorine free ionic liquids (ILs) containing the tricyanomethanide anion ([C(CN)3]) as an electrolyte in electrochemical double-layer capacitors (EDLCs). Three cations were used; 1-butyl-3-methylimidazolium ([Im1,4]), N-butyl-N-methylpyrrolidinium ([Pyr1,4]) and N-butyl-N-methylpiperidinium ([Pip1,4]). Their physicochemical properties are discussed alongside with their performance as electrolytes. We found that the cyano-based ILs present higher ionic conductivity (9.4, 8.7 and 4.2 mS cm-1 at 25 °C for [Im1,4], [Pyr1,4] and [Pip1,4], respectively) than the widely studied IL containing the bis(trifluoromethylsulfonyl)imide anion, namely [Pyr1,4][Tf2N] (2.7 mS cm-1 at 25 °C). Of the three ILs investigated, [Pip1,4][C(CN)3] presents the widest electrochemical stability window, 3.0 V, while [Pyr1,4][C(CN)3] is stable up to 2.9 V and its [Tf2N] analogue can operate at 3.5 V. Despite operating at a lower voltage, [Pyr1,4][C(CN)3] EDLC is capable of delivering up to 4.5 W h kg-1 when operating at high specific power of 7.2 kW kg-1, while its [Pyr1,4][Tf2N] counterpart only delivered 3.0 W h kg-1 when operated at similar power.

3.
Sci Rep ; 6: 22062, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26911531

ABSTRACT

Electrochemical double layer capacitors (EDLCs) employing ionic liquid electrolytes are the subject of much research as they promise increased operating potentials, and hence energy densities, when compared with currently available devices. Herein we report on the influence of the particle size distribution of activated carbon material on the performance of ionic liquid based EDLCs. Mesoporous activated carbon was ball-milled for increasing durations and the resultant powders characterized physically (using laser diffraction, nitrogen sorption and SEM) and investigated electrochemically in the form of composite EDLC electrodes. A bi-modal particle size distribution was found for all materials demonstrating an increasing fraction of smaller particles with increased milling duration. In general, cell capacitance decreased with increased milling duration over a wide range of rates using CV and galvanostatic cycling. Reduced coulombic efficiency is observed at low rates (<25 mVs(-1)) and the efficiency decreases as the volume fraction of the smaller particles increases. Efficiency loss was attributed to side reactions, particularly electrolyte decomposition, arising from interactions with the smaller particles. The effect of reduced efficiency is confirmed by cycling for over 15,000 cycles, which has the important implication that diminished performance and reduced cycle life is caused by the presence of submicron-sized particles.

4.
Faraday Discuss ; 172: 163-77, 2014.
Article in English | MEDLINE | ID: mdl-25427314

ABSTRACT

Electrochemical double layer capacitors (EDLCs) are a category of supercapacitors; devices that store charge at the interface between electrodes and an electrolyte. Currently available commercial devices have a limited operating potential that restricts their energy and power densities. Ionic liquids (ILs) are a promising alternative electrolyte as they generally exhibit greater electrochemical stabilities and lower volatility. This work investigates the electrochemical performance of EDLCs using ILs that combine the bis(trifluoromethanesulfonyl)imide anion with sulfonium and ammonium based cations. Different activated carbon materials were employed to also investigate the influence of varying pore size on electrochemical performance. Electrochemical impedance spectroscopy (EIS) and constant current cycling at different rates were used to assess resistance and specific capacitance. In general, greater specific capacitances and lower resistances were found with the sulfonium based ILs studied, and this was attributed to their smaller cation volume. Comparing electrochemical stabilities indicated that significantly higher operating potentials are possible with the ammonium based ILs. The marginally smaller sulfonium cation performed better with the carbon exhibiting the largest pore width, whereas peak performance of the larger sulfonium cation was associated with a narrower pore size. Considerable differences between the performance of the ammonium based ILs were observed and attributed to differences not only in cation size but also due to the inclusion of a methoxyethyl group. The improved performance of the ether bond containing IL was ascribed to electron donation from the oxygen atom influencing the charge density of the cation and facilitating cation-cation interactions.

5.
Phys Chem Chem Phys ; 15(39): 16774-8, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-23995080

ABSTRACT

Carbon electrochemical capacitor electrodes containing nitrogen groups were studied with respect to their electrochemical behaviour, chemical composition and physical characteristics. Thermal treatment of nitrogen-enriched carbon materials in different atmospheres was used to control the specific type and concentration of nitrogen groups present, while importantly retaining similar pore size distributions. Pyridinic nitrogen is shown to be most likely responsible for increased values of surface area normalized specific capacitance, although the mechanisms by which this occurs are poorly understood. Contrast matched-small angle neutron scattering (CM-SANS) was employed to probe the electrode porosity accessible to an electrolyte and indicates that there is no appreciable difference between the materials studied. Cyclic Voltammetry showed no evidence of electrode reactions occurring over the operating potential range. Therefore a greater amount of charge is displaced at pyridinic sites during the charge-discharge process. This may occur due to a specific adsorption mechanism, coupled with enhanced electron conductivity through the carbon matrix.

6.
J Phys Chem Lett ; 4(17): 2970-2974, 2013 Sep 05.
Article in English | MEDLINE | ID: mdl-24920995

ABSTRACT

Electrochemical capacitors (ECs) are electrical energy storage devices that have the potential to be very useful in a wide range of applications, especially where there is a large disparity between peak and average power demands. The use of ionic liquids (ILs) as electrolytes in ECs can increase the energy density of devices; however, the viscosity and conductivity of ILs adversely influence the power density of the device. We present experimental results where several ILs containing different cations have been employed as the electrolyte in cells containing mesoporous carbon electrodes. Specifically, the behavior of ILs containing an ether bond in an alkyl side chain are compared with those of a similar structure and size but containing purely alkyl side chains. Using electrochemical impedance spectroscopy and constant current cycling, we show that the presence of the ether bond can dramatically increase the specific capacitance and reduce device resistance. These results have the important implication that such ILs can be used to tailor the physical properties and electrochemical performance of IL-based electrolytes.

SELECTION OF CITATIONS
SEARCH DETAIL
...