Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Acta Biomater ; 182: 93-110, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38788988

ABSTRACT

Cell culture on soft matrix, either in 2D and 3D, preserves the characteristics of progenitors. However, the mechanism by which the mechanical microenvironment determines progenitor phenotype, and its relevance to human biology, remains poorly described. Here we designed multi-well hydrogel plates with a high degree of physico-chemical uniformity to reliably address the molecular mechanism underlying cell state modification driven by physiological stiffness. Cell cycle, differentiation and metabolic activity could be studied in parallel assays, showing that the soft environment promotes an atypical S-phase quiescence and prevents cell drift, while preserving the differentiation capacities of human bronchoepithelial cells. These softness-sensitive responses are associated with calcium leakage from the endoplasmic reticulum (ER) and defects in proteostasis and enhanced basal ER stress. The analysis of available single cell data of the human lung also showed that this non-conventional state coming from the soft extracellular environment is indeed consistent with molecular feature of pulmonary basal cells. Overall, this study demonstrates that mechanical mimicry in 2D culture supports allows to maintain progenitor cells in a state of high physiological relevance for characterizing the molecular events that govern progenitor biology in human tissues. STATEMENT OF SIGNIFICANCE: This study focuses on the molecular mechanism behind the progenitor state induced by a soft environment. Using innovative hydrogel supports mimicking normal human lung stiffness, the data presented demonstrate that lung mechanics prevent drift while preserving the differentiation capabilities of lung epithelial cells. Furthermore, we show that the cells are positioned in a quiescent state in the atypical S phase. Mechanistically, we demonstrate that this quiescence: i) is driven by calcium leakage from the endoplasmic reticulum (ER) and basal activation of the PERK branch of ER stress signalling, and ii) protects cells from lethal ER stress caused by metabolic stress. Finally, we validate using human single-cell data that these molecular features identified on the soft matrix are found in basal lung cells. Our results reveal original and relevant molecular mechanisms orchestrating cell fate in a soft environment and resistance to exogenous stresses, thus providing new fundamental and clinical insights into basal cell biology.


Subject(s)
Endoplasmic Reticulum Stress , Extracellular Matrix , Humans , Extracellular Matrix/metabolism , Lung/metabolism , Cell Differentiation , Hydrogels/chemistry
2.
iScience ; 27(2): 108903, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318383

ABSTRACT

Although the involvement of protein kinase CK2 in cancer is well-documented, there is a need for selective CK2 inhibitors suitable for investigating CK2 specific roles in cancer-related biological pathways and further exploring its therapeutic potential. Here, we report the discovery of AB668, an outstanding selective inhibitor that binds CK2 through a bivalent mode, interacting both at the ATP site and an allosteric αD pocket unique to CK2. Using caspase activation assay, live-cell imaging, and transcriptomic analysis, we have compared the effects of this bivalent inhibitor to representative ATP-competitive inhibitors, CX-4945, and SGC-CK2-1. Our results show that in contrast to CX-4945 or SGC-CK2-1, AB668, by targeting the CK2 αD pocket, has a distinct mechanism of action regarding its anti-cancer activity, inducing apoptotic cell death in several cancer cell lines and stimulating distinct biological pathways in renal cell carcinoma.

3.
Cerebellum ; 23(1): 181-196, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36729270

ABSTRACT

Modeling paraneoplastic neurological diseases to understand the immune mechanisms leading to neuronal death is a major challenge given the rarity and terminal access of patients' autopsies. Here, we present a pilot study aiming at modeling paraneoplastic cerebellar degeneration with Yo autoantibodies (Yo-PCD). Female mice were implanted with an ovarian carcinoma cell line expressing CDR2 and CDR2L, the known antigens recognized by anti-Yo antibodies. To boost the immune response, we also immunized the mice by injecting antigens with diverse adjuvants and immune checkpoint inhibitors. Ataxia and gait instability were assessed in treated mice as well as autoantibody levels, Purkinje cell density, and immune infiltration in the cerebellum. We observed the production of anti-Yo antibodies in the CSF and serum of all immunized mice. Brain immunoreaction varied depending on the site of implantation of the tumor, with subcutaneous administration leading to a massive infiltration of immune cells in the meningeal spaces, choroid plexus, and cerebellar parenchyma. However, we did not observe massive Purkinje cell death nor any motor impairments in any of the experimental groups. Self-sustained neuro-inflammation might require a longer time to build up in our model. Unusual tumor antigen presentation and/or intrinsic, species-specific factors required for pro-inflammatory engagement in the brain may also constitute strong limitations to achieve massive recruitment of antigen-specific T-cells and killing of antigen-expressing neurons in this mouse model.


Subject(s)
Cerebellar Ataxia , Paraneoplastic Cerebellar Degeneration , Humans , Mice , Female , Animals , Pilot Projects , Cerebellum/pathology , Purkinje Cells/metabolism , Cerebellar Ataxia/pathology , Autoantibodies
4.
Mol Oncol ; 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37452637

ABSTRACT

Nutrient availability is a key determinant of tumor cell behavior. While nutrient-rich conditions favor proliferation and tumor growth, scarcity, and particularly glutamine starvation, promotes cell dedifferentiation and chemoresistance. Here, linking ribosome biogenesis plasticity with tumor cell fate, we uncover that the amino acid sensor general control non-derepressible 2 (GCN2; also known as eIF-2-alpha kinase 4) represses the expression of the precursor of ribosomal RNA (rRNA), 47S, under metabolic stress. We show that blockade of GCN2 triggers cell death by an irremediable nucleolar stress and subsequent TP53-mediated apoptosis in patient-derived models of colon adenocarcinoma (COAD). In nutrient-rich conditions, a cell-autonomous GCN2 activity supports cell proliferation by stimulating 47S rRNA transcription, independently of the canonical integrated stress response (ISR) axis. Impairment of GCN2 activity prevents nuclear translocation of methionyl-tRNA synthetase (MetRS), resulting in nucleolar stress, mTORC1 inhibition and, ultimately, autophagy induction. Inhibition of the GCN2-MetRS axis drastically improves the cytotoxicity of RNA polymerase I (RNA pol I) inhibitors, including the first-line chemotherapy oxaliplatin, on patient-derived COAD tumoroids. Our data thus reveal that GCN2 differentially controls ribosome biogenesis according to the nutritional context. Furthermore, pharmacological co-inhibition of the two GCN2 branches and RNA pol I activity may represent a valuable strategy for elimination of proliferative and metabolically stressed COAD cells.

5.
medRxiv ; 2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38168303

ABSTRACT

The incidence of the mobile tongue cancer in young patients has been rising. This oral cancer (OC) type has no identified risk factors (NIRF), no established molecular markers and is not yet recognized as a distinct clinical entity. To understand this emerging malignancy, we innovatively analyzed the public head and neck cancer multi-omics data. We identified mutational signatures that successfully stratified 307 OC and 109 laryngeal cancer cases according to their clinico-pathological characteristics. The NIRF OCs exhibited significantly increased activities of endogenous clock-like and APOBEC-associated mutagenesis, alongside specific cancer driver gene mutations, distinct methylome patterns and prominent antimicrobial transcriptomic responses. Furthermore, we show that mutational signature SBS16 in OCs reflects the combined effects of alcohol drinking and tobacco smoking. Our study characterizes the unique disease histories and molecular programs of the NIRF OCs revealing that this emerging cancer subtype is likely driven by increased endogenous mutagenesis correlated with responses to microbial insults.

6.
Cancers (Basel) ; 14(11)2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35681770

ABSTRACT

The kynurenine pathway has been highlighted as a gatekeeper of immune-privileged sites through its ability to generate from tryptophan a set of immunosuppressive metabolic intermediates. It additionally constitutes an important source of cellular NAD+ for the organism. Hijacking of its immunosuppressive functions, as recurrently observed in multiple cancers, facilitates immune evasion and promotes tumor development. Based on these observations, researchers have focused on characterizing indoleamine 2,3-dioxygenase (IDO1), the main enzyme catalyzing the first and limiting step of the pathway, and on developing therapies targeting it. Unfortunately, clinical trials studying IDO1 inhibitors have thus far not met expectations, highlighting the need to unravel this complex signaling pathway further. Recent advances demonstrate that these metabolites additionally promote tumor growth, metastatic dissemination and chemoresistance by a combination of paracrine and autocrine effects. Production of NAD+ also contributes to cancer progression by providing cancer cells with enhanced plasticity, invasive properties and chemoresistance. A comprehensive survey of this complexity is challenging but necessary to achieve medical success.

7.
Life Sci Alliance ; 5(7)2022 07.
Article in English | MEDLINE | ID: mdl-35396334

ABSTRACT

The glucose-requiring hexosamine biosynthetic pathway (HBP), which produces UDP-N-acetylglucosamine for glycosylation reactions, promotes lung adenocarcinoma (LUAD) progression. However, lung tumor cells often reside in low-nutrient microenvironments, and whether the HBP is involved in the adaptation of LUAD to nutrient stress is unknown. Here, we show that the HBP and the coat complex II (COPII) play a key role in cell survival during glucose shortage. HBP up-regulation withstood low glucose-induced production of proteins bearing truncated N-glycans, in the endoplasmic reticulum. This function for the HBP, alongside COPII up-regulation, rescued cell surface expression of a subset of glycoproteins. Those included the epidermal growth factor receptor (EGFR), allowing an EGFR-dependent cell survival under low glucose in anchorage-independent growth. Accordingly, high expression of the HBP rate-limiting enzyme GFAT1 was associated with wild-type EGFR activation in LUAD patient samples. Notably, HBP and COPII up-regulation distinguished LUAD from the lung squamous-cell carcinoma subtype, thus uncovering adaptive mechanisms of LUAD to their harsh microenvironment.


Subject(s)
Glucose , Hexosamines , ErbB Receptors/genetics , Glucose/metabolism , Glycosylation , Hexosamines/metabolism , Humans , Nutrients
8.
Eur J Cancer Care (Engl) ; 31(2): e13558, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35170126

ABSTRACT

OBJECTIVES: Head and neck squamous cell carcinomas (HNSCCs) mainly affect smokers and drinkers. However, oral cavity squamous cell cancers (OCSCCs) are increasingly affecting patients with no identified risk factors (NIRFs). This study aimed at characterising their experience of the disease. METHODS: Qualitative study based on semi-structured interviews of 20 survivors of OCSCC with NIRF. Methods used in grounded theory approach were applied. RESULTS: Patients with NIRF had a similar experience to that of patients with risk factors regarding treatments. The absence of identified causes led to stigma and led the patients to distance themselves, both from the stereotypic HNSCC cancer patient and the identity as a cancer patient. Furthermore, having no identified risk factors seemed to reinforce the fear of recurrence. CONCLUSION: This study is the first to address key gaps in knowledge regarding patients with NIRF having survived OCSCC. Their experience is similar to that of patients with orphan diseases. Owing to confrontation with other patients and the repeated questions of caregivers about tobacco/alcohol consumption, these patients felt stigmatised during their treatment. OCSCC patients with NIRF may benefit from guidance and support on how to engage in prevention.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Alcohol Drinking/adverse effects , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/therapy , Head and Neck Neoplasms/complications , Humans , Mouth Neoplasms/therapy , Risk Factors , Squamous Cell Carcinoma of Head and Neck
9.
J Inflamm Res ; 14: 2149-2156, 2021.
Article in English | MEDLINE | ID: mdl-34045885

ABSTRACT

INTRODUCTION: Most Toll-like receptors and IL-1/IL-18 receptors activate a signaling cascade via the adaptor molecule MyD88, resulting in NF-κB activation and inflammatory cytokine and chemokine production. Females are less susceptible than males to inflammatory conditions, presumably due to protection by estrogen. The exact mechanism underlying this protection is unknown. METHODS: MCF7 cells expressing wild-type or mutated LXXLL motif were used to determine MyD88/estrogen receptor (ER)-a interaction by immunoprecipitation and cell activation by ELISA and luciferase reporter assay. IL-1b and/or E2 were used to activate MCF7 cells expressing normal or knocked down levels of PRMT1. Finally, in situ proximity ligation assay with anti-MyD88 and anti-methylated ER-a (methER-a) antibodies was used to evaluate MyD88/methylated ER-a interaction in THP1 cells and histological sections. RESULTS: We show that MyD88 interacts with a methylated, cytoplasmic form of estrogen receptor-alpha (methER-α). This interaction is required for NF-κB transcriptional activity and pro-inflammatory cytokine production, and is dissociated by estrogen. Importantly, we show a strong gender segregation in gametogenic reproductive organs, with MyD88/methER-α interactions found in testicular tissues and in ovarian tissues from menopausal women, but not in ovaries from women age 49 and less - suggesting a role for estrogen in disrupting this complex in situ. DISCUSSION: Collectively, our results indicate that the formation of MyD88/methER-α complexes during inflammatory signaling and their disruption by estrogen may represent a mechanism that contributes to gender bias in inflammatory responses.

10.
Metabolites ; 11(4)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810430

ABSTRACT

Genetic alterations in non-small cell lung cancers (NSCLC) stimulate the generation of energy and biomass to promote tumor development. However, the efficacy of the translation process is finely regulated by stress sensors, themselves often controlled by nutrient availability and chemotoxic agents. Yet, the crosstalk between therapeutic treatment and glucose availability on cell mass generation remains understudied. Herein, we investigated the impact of pemetrexed (PEM) treatment, a first-line agent for NSCLC, on protein synthesis, depending on high or low glucose availability. PEM treatment drastically repressed cell mass and translation when glucose was abundant. Surprisingly, inhibition of protein synthesis caused by low glucose levels was partially dampened upon co-treatment with PEM. Moreover, PEM counteracted the elevation of the endoplasmic reticulum stress (ERS) signal produced upon low glucose availability, providing a molecular explanation for the differential impact of the drug on translation according to glucose levels. Collectively, these data indicate that the ERS constitutes a molecular crosstalk between microenvironmental stressors, contributing to translation reprogramming and proteostasis plasticity.

11.
Cancers (Basel) ; 12(3)2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32121537

ABSTRACT

Endoplasmic reticulum (ER) stress generates reactive oxygen species (ROS) that induce apoptosis if left unabated. To limit oxidative insults, the ER stress PKR-like endoplasmic reticulum Kinase (PERK) has been reported to phosphorylate and activate nuclear factor erythroid 2-related factor 2 (NRF2). Here, we uncover an alternative mechanism for PERK-mediated NRF2 regulation in human cells that does not require direct phosphorylation. We show that the activation of the PERK pathway rapidly stimulates the expression of NRF2 through activating transcription factor 4 (ATF4). In addition, NRF2 activation is late and largely driven by reactive oxygen species (ROS) generated during late protein synthesis recovery, contributing to protecting against cell death. Thus, PERK-mediated NRF2 activation encompasses a PERK-ATF4-dependent control of NRF2 expression that contributes to the NRF2 protective response engaged during ER stress-induced ROS production.

12.
Cancer Lett ; 472: 29-39, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31838086

ABSTRACT

Toll-like receptor 3 (TLR3) is an immune receptor that behaves like a death receptor in tumor cells, thereby providing an original target for cancer therapy. The therapeutic potential of TLR3 targeting in malignant mesothelioma, an aggressive and incurable neoplasia of the pleura and peritoneum, has so far not been addressed. We investigated TLR3 expression and sensitivity of human mesothelioma cell lines to the synthetic dsRNA Poly(I:C), alone or in combination with cisplatin, the gold standard chemotherapy in mesothelioma. Activation of TLR3 by Poly(I:C) induced apoptosis of 4/8 TLR3-positive cell lines but not of TLR3-negative cell lines. The combined cisplatin/Poly(I:C) treatment enhanced apoptosis of 3/4 Poly(I:C)-sensitive cell lines and overcame resistance to Poly(I:C) or cisplatin alone in 2/4 cell lines. Efficacy of the combined treatment relied on cisplatin-induced downregulation of c-FLIP, the main regulator of the extrinsic apoptotic pathway, leading to an enhanced caspase-8-mediated pathway. Of note, 6/6 primary cell samples isolated from patients with peritoneal mesothelioma expressed TLR3. Patient-derived cells were sensitive to Poly(I:C) alone while the combined cisplatin/Poly(I:C) treatment induced dramatic cell death. Our findings demonstrate that TLR3 targeting in combination with cisplatin presents an innovative therapeutic strategy in mesothelioma.


Subject(s)
Apoptosis/drug effects , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , Lung Neoplasms/drug therapy , Mesothelioma/drug therapy , Toll-Like Receptor 3/genetics , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Caspase 8/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/physiopathology , Mesothelioma/genetics , Mesothelioma/physiopathology , Mesothelioma, Malignant , Poly I-C/pharmacology , Signal Transduction/drug effects
14.
J Hepatol ; 71(4): 763-772, 2019 10.
Article in English | MEDLINE | ID: mdl-31220470

ABSTRACT

BACKGROUND & AIMS: Low levels of toll-like receptor 3 (TLR3) in patients with hepatocellular carcinoma (HCC) are associated with poor prognosis, primarily owing to the loss of inflammatory signaling and subsequent lack of immune cell recruitment to the liver. Herein, we explore the role of TLR3-triggered apoptosis in HCC cells. METHODS: Quantitative reverse transcription PCR, western blotting, immunohistochemistry and comparative genomic hybridization were used to analyze human and mouse HCC cell lines, as well as surgically resected primary human HCCs, and to study the impact of TLR3 expression on patient outcomes. Functional analyses were performed in HCC cells, following the restoration of TLR3 by lentiviral transduction. The role of TLR3-triggered apoptosis in HCC was analyzed in vivo in a transgenic mouse model of HCC. RESULTS: Lower expression of TLR3 in tumor compared to non-tumor matched tissue was observed at both mRNA and protein levels in primary HCC, and was predictive of shorter recurrence-free survival after surgical resection in both univariate (hazard ratio [HR] 1.79; 95% CI 1.04-3.06; p = 0.03) and multivariate analyses (HR 1.73; CI 1.01-2.97; p = 0.04). Immunohistochemistry confirmed frequent downregulation of TLR3 in human and mouse primary HCC cells. None of the 6 human HCC cell lines analyzed expressed TLR3, and ectopic expression of TLR3 following lentiviral transduction not only restored the inflammatory response but also sensitized cells to TLR3-triggered apoptosis. Lastly, in the transgenic mouse model of HCC, absence of TLR3 expression was accompanied by a lower rate of preneoplastic hepatocyte apoptosis and accelerated hepatocarcinogenesis without altering the tumor immune infiltrate. CONCLUSION: Downregulation of TLR3 protects transforming hepatocytes from direct TLR3-triggered apoptosis, thereby contributing to hepatocarcinogenesis and poor patient outcome. LAY SUMMARY: Hepatocellular carcinoma (HCC) is a heterogeneous disease associated with a poor prognosis. In patients with HCC, TLR3 downregulation is associated with reduced survival. Herein, we show that the absence of TLR3 is associated with a lower rate of apoptosis, and subsequently more rapid hepatocarcinogenesis, without any change to the immune infiltrate in the liver. Therefore, the poor prognosis associated with low TLR3 expression in HCC is likely linked to tumors ability to escape apoptosis. TLR3 may become a promising therapeutic target in TLR3-positive HCC.


Subject(s)
Carcinogenesis/metabolism , Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Prognosis , Toll-Like Receptor 3/genetics , Animals , Apoptosis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Female , Hepatectomy/methods , Hepatectomy/mortality , Humans , Kaplan-Meier Estimate , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Male , Mice , Middle Aged , Signal Transduction
15.
Cell Death Dis ; 9(9): 874, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30158588

ABSTRACT

Toll-like receptor 3 (TLR3) mediates innate immune responses by sensing viral dsRNA, but also induces apoptosis selectively in cancer cells. Our analysis by immunohistochemistry revealed that TLR3 is frequently overexpressed in 130 non-small cell lung cancer (NSCLC) patients' samples compared with normal bronchial epithelium (P < 0.0001, Mann-Whitney test), supporting the therapeutic potential of TLR3 ligand for this type of cancer. However, a proportion of TLR3-expressing cancer cell lines, including NSCLC, remain resistant to TLR3-mediated apoptosis, and the underlying mechanism of resistance remains unclear. We here investigated the molecular basis conferring resistance to non-transformed vs. transformed cells against TLR3-mediated cell death. In non-transformed epithelial cells cellular FLICE-like inhibitory protein (c-FLIP) and cellular Inhibitor of APoptosis (cIAPs) ubiquitin ligases exerted an efficient double brake on apoptosis signaling. In contrast, releasing only one of these two brakes was sufficient to overcome the resistance of 8/8 cancer cell lines tested. Remarkably, the release of the c-FLIP, but not cIAPs, brake only results in the sensitization of all human cancer cells to TLR3-mediated apoptosis. Taking advantage of the difference between transformed and non-transformed cells, we developed a rational strategy by combining the chemotherapeutic agent paclitaxel, which decreases c-FLIP expression, with TLR3 ligand. This combination was highly synergistic for triggering apoptosis in cancer cells but not in non-transformed cells. In vivo, the combination of paclitaxel with dsRNA delayed tumor growth and prolonged survival in a mouse xenograft lung tumor model. In conclusion, combining the release of the c-FLIP brake with TLR3 ligand synergizes to selectively kill cancer cells, and could represent an efficient and safe therapy against TLR3-expressing cancers such as NSCLC.


Subject(s)
Apoptosis/physiology , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Toll-Like Receptor 3/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Female , Humans , Lung Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , RNA, Small Interfering/metabolism
16.
Oncotarget ; 7(29): 46615-46627, 2016 Jul 19.
Article in English | MEDLINE | ID: mdl-27366950

ABSTRACT

Telomere stability is a hallmark of immortalized cells, including cancer cells. While the telomere length is maintained in most cases by the telomerase, the activity of a protein complex called Shelterin is required to protect telomeres against unsuitable activation of the DNA damage response pathway. Within this complex, telomeric repeat binding factor 2 (TRF2) plays an essential role by blocking the ataxia telangiectasia-mutated protein (ATM) signaling pathway at telomeres and preventing chromosome end fusion. We showed that TRF2 was phosphorylated in vitro and in vivo on serine 323 by extracellular signal-regulated kinase (ERK1/2) in both normal and cancer cells. Moreover, TRF2 and activated ERK1/2 unexpectedly interacted in the cytoplasm of tumor cells and human tumor tissues. The expression of non-phosphorylatable forms of TRF2 in melanoma cells induced the DNA damage response, leading to growth arrest and tumor reversion. These findings revealed that the telomere stability is under direct control of one of the major pro-oncogenic signaling pathways (RAS/RAF/MEK/ERK) via TRF2 phosphorylation.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/physiology , MAP Kinase Signaling System/physiology , Telomeric Repeat Binding Protein 2/physiology , Animals , Apoptosis , Cell Line , Female , Humans , Mice , Phosphorylation , Telomere/physiology
17.
Sci Rep ; 6: 27278, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27255611

ABSTRACT

The hexosamine biosynthetic pathway (HBP) is a nutrient-sensing metabolic pathway that produces the activated amino sugar UDP-N-acetylglucosamine, a critical substrate for protein glycosylation. Despite its biological significance, little is known about the regulation of HBP flux during nutrient limitation. Here, we report that amino acid or glucose shortage increase GFAT1 production, the first and rate-limiting enzyme of the HBP. GFAT1 is a transcriptional target of the activating transcription factor 4 (ATF4) induced by the GCN2-eIF2α signalling pathway. The increased production of GFAT1 stimulates HBP flux and results in an increase in O-linked ß-N-acetylglucosamine protein modifications. Taken together, these findings demonstrate that ATF4 provides a link between nutritional stress and the HBP for the regulation of the O-GlcNAcylation-dependent cellular signalling.


Subject(s)
Activating Transcription Factor 4/metabolism , Amino Acids/metabolism , Glucose/metabolism , Hexosamines/biosynthesis , Protein Serine-Threonine Kinases/metabolism , Acetylglucosamine/metabolism , Animals , Biosynthetic Pathways , Cell Line , HeLa Cells , Humans , Mice , Nitrogenous Group Transferases/metabolism , Rats , Signal Transduction
18.
Hum Immunol ; 76(5): 307-17, 2015 May.
Article in English | MEDLINE | ID: mdl-25797200

ABSTRACT

The chemokine C receptor 7 (CCR7) is a G-protein-coupled heptahelical receptor (GPCR) that is expressed on a wide variety of cells including memory T cells, B cells, mature dendritic cells, and cancer cells. Activated by its ligands CCL19 or CCL21, CCR7 plays a major role in metastasis of cancer cells. Recent studies demonstrated the role of NF-κB and AP-1 transcription factors in addition to let-7 microRNA in CCR7 expression. Our ChIP assays further show the binding of Sp-1, Sp-3 and NFAT-1 transcription factors to their potential binding sites in the 1Kb promoter region with the later found to inhibit whilst Sp-1, and Sp-3 were found to stimulate CCR7 expression as demonstrated by transfection assays. On the other hand, in addition to the known let-7 regulation of CCR7, we found miR-21 to have a highly conserved target region in CCR7 3'UTR and to be significantly down-regulated during the course of dendritic cell maturation, allowing for high expression of CCR7.


Subject(s)
Cell Differentiation , Dendritic Cells/immunology , Receptors, CCR7/metabolism , 3' Untranslated Regions/genetics , Cell Differentiation/genetics , Gene Expression Regulation/immunology , HEK293 Cells , HeLa Cells , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , Receptors, CCR7/genetics , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Sp3 Transcription Factor/genetics , Sp3 Transcription Factor/metabolism
19.
Curr Opin Oncol ; 26(1): 86-91, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24285099

ABSTRACT

PURPOSE OF REVIEW: Inflammation is emerging as a new hallmark of cancer, and the toll-like receptor and interleukin-1 receptor adaptor molecule MyD88 has been linked to tumorigenesis. The purpose of this review is to give a brief overview of the latest advances in understanding the complexity of MyD88 implication in tumorigenesis. RECENT FINDINGS: MyD88 is shown to play a protumorigenic role through two mechanisms. First, it activates the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway in the hematopoietic compartment and in tumor cells, inducing an inflammatory environment favorable to carcinogenesis. Second, it plays a cell-autonomous role in Ras signaling and transformation, independently of its role in inflammatory signaling. MyD88 mediates the optimal activation of the Ras/extracellular signal-regulated kinase (ERK) pathway by binding to ERK and protecting it from dephosphorylation. This optimal activation of the Ras pathway is essential for the expression of important DNA repair enzymes, allowing cancer cells to efficiently repair damaged DNA. MyD88 is also shown in certain cases to play an antitumoral role through modulation of the immune response SUMMARY: These findings present a new dual function model for MyD88 implication in carcinogenesis making it a potential therapeutic target in cancer.


Subject(s)
Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Myeloid Differentiation Factor 88/physiology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Transformation, Neoplastic/metabolism , Humans , Inflammation/genetics , MAP Kinase Signaling System/physiology , Myeloid Differentiation Factor 88/genetics , Neoplasms/genetics , Neoplasms/therapy , Proto-Oncogene Proteins/physiology , Signal Transduction/physiology
20.
J Natl Cancer Inst ; 105(13): 937-46, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23766530

ABSTRACT

BACKGROUND: MyD88 is an adaptor molecule in Toll-like receptor and interleukin 1 receptor signaling implicated in tumorigenesis through proinflammatory mechanisms. We have recently reported that MyD88 also directly promotes optimal activation of the Ras/Erk pathway. Here we investigate MyD88 implication in the maintenance of the transformation of Ras-dependent tumors. METHODS: RNA interference was used to inhibit MyD88 expression in the colon cancer cell lines HCT116 and LS513. Apoptosis, DNA damage, p53 function, ERCC1 levels, and Ras and inflammatory signaling pathways were analyzed. Using in vitro assays and xenotransplantation in nude mice (five per group), HCT116 tumor growth was assessed following MyD88 knockdown in presence or absence of chemotherapy. RESULTS: MyD88 exerts antiapoptotic functions in colon cancer cells via the Ras/Erk, but not the NF-κB, pathway. MyD88 inhibition leads to defective ERCC1-dependent DNA repair and to accumulation of DNA damage, resulting in cancer cell death via p53. Furthermore, we show that knocking down MyD88 sensitizes cancer cells to genotoxic agents such as platinum salts in vitro and in vivo. Indeed, HCT116 tumor growth following treatment with a combination of suboptimal MyD88 inhibition and suboptimal doses of cisplatin (fold tumor increase = 5.4 ± 1.6) was statistically significantly reduced in comparison to treatment with doxycycline alone (12.4 ± 3.1) or with cisplatin alone (12.5 ± 2.6) (P = .005 for both, one-sided Student t test). CONCLUSIONS: Collectively, these results indicate a novel and original link between inflammation, DNA repair, and cancer, and provide further rationale for MyD88 as a potential therapeutic target in Ras-dependent cancers, in the context of concomitant genotoxic chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , DNA Repair/drug effects , Drug Resistance, Neoplasm , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/metabolism , Receptors, Interleukin-1/antagonists & inhibitors , Receptors, Interleukin-1/metabolism , Animals , Base Sequence , Blotting, Western , Cell Line, Tumor , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cisplatin/pharmacology , Colonic Neoplasms/metabolism , DNA Damage/drug effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Doxycycline/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Endonucleases/genetics , Endonucleases/metabolism , Female , Flow Cytometry , Humans , Membrane Glycoproteins/genetics , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Sequence Data , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , RNA, Small Interfering/analysis , Receptors, Interleukin-1/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...