Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Metabolites ; 13(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37999262

ABSTRACT

There were missing figures and associated legends for Figure 3 and Figure 4 as published due to a publication error [...].

2.
Front Microbiol ; 14: 1139213, 2023.
Article in English | MEDLINE | ID: mdl-37303779

ABSTRACT

Interactions between autotrophs and heterotrophs are central to carbon (C) exchange across trophic levels in essentially all ecosystems and metabolite exchange is a frequent mechanism for distributing C within spatially structured ecosystems. Yet, despite the importance of C exchange, the timescales at which fixed C is transferred in microbial communities is poorly understood. We employed a stable isotope tracer combined with spatially resolved isotope analysis to quantify photoautotrophic uptake of bicarbonate and track subsequent exchanges across a vertical depth gradient in a stratified microbial mat over a light-driven diel cycle. We observed that C mobility, both across the vertical strata and between taxa, was highest during periods of active photoautotrophy. Parallel experiments with 13C-labeled organic substrates (acetate and glucose) showed comparably less exchange of C within the mat. Metabolite analysis showed rapid incorporation of 13C into molecules that can both comprise a portion of the extracellular polymeric substances in the system and serve to transport C between photoautotrophs and heterotrophs. Stable isotope proteomic analysis revealed rapid C exchange between cyanobacterial and associated heterotrophic community members during the day with decreased exchange at night. We observed strong diel control on the spatial exchange of freshly fixed C within tightly interacting mat communities suggesting a rapid redistribution, both spatially and taxonomically, primarily during daylight periods.

3.
Metabolites ; 13(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36677030

ABSTRACT

Computational methods for creating in silico libraries of molecular descriptors (e.g., collision cross sections) are becoming increasingly prevalent due to the limited number of authentic reference materials available for traditional library building. These so-called "reference-free metabolomics" methods require sampling sets of molecular conformers in order to produce high accuracy property predictions. Due to the computational cost of the subsequent calculations for each conformer, there is a need to sample the most relevant subset and avoid repeating calculations on conformers that are nearly identical. The goal of this study is to introduce a heuristic method of finding the most dissimilar conformers from a larger population in order to help speed up reference-free calculation methods and maintain a high property prediction accuracy. Finding the set of the n items most dissimilar from each other out of a larger population becomes increasingly difficult and computationally expensive as either n or the population size grows large. Because there exists a pairwise relationship between each item and all other items in the population, finding the set of the n most dissimilar items is different than simply sorting an array of numbers. For instance, if you have a set of the most dissimilar n = 4 items, one or more of the items from n = 4 might not be in the set n = 5. An exact solution would have to search all possible combinations of size n in the population exhaustively. We present an open-source software called similarity downselection (SDS), written in Python and freely available on GitHub. SDS implements a heuristic algorithm for quickly finding the approximate set(s) of the n most dissimilar items. We benchmark SDS against a Monte Carlo method, which attempts to find the exact solution through repeated random sampling. We show that for SDS to find the set of n most dissimilar conformers, our method is not only orders of magnitude faster, but it is also more accurate than running Monte Carlo for 1,000,000 iterations, each searching for set sizes n = 3-7 out of a population of 50,000. We also benchmark SDS against the exact solution for example small populations, showing that SDS produces a solution close to the exact solution in these instances. Using theoretical approaches, we also demonstrate the constraints of the greedy algorithm and its efficacy as a ratio to the exact solution.

4.
J Cheminform ; 14(1): 64, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36138446

ABSTRACT

The majority of primary and secondary metabolites in nature have yet to be identified, representing a major challenge for metabolomics studies that currently require reference libraries from analyses of authentic compounds. Using currently available analytical methods, complete chemical characterization of metabolomes is infeasible for both technical and economic reasons. For example, unambiguous identification of metabolites is limited by the availability of authentic chemical standards, which, for the majority of molecules, do not exist. Computationally predicted or calculated data are a viable solution to expand the currently limited metabolite reference libraries, if such methods are shown to be sufficiently accurate. For example, determining nuclear magnetic resonance (NMR) spectroscopy spectra in silico has shown promise in the identification and delineation of metabolite structures. Many researchers have been taking advantage of density functional theory (DFT), a computationally inexpensive yet reputable method for the prediction of carbon and proton NMR spectra of metabolites. However, such methods are expected to have some error in predicted 13C and 1H NMR spectra with respect to experimentally measured values. This leads us to the question-what accuracy is required in predicted 13C and 1H NMR chemical shifts for confident metabolite identification? Using the set of 11,716 small molecules found in the Human Metabolome Database (HMDB), we simulated both experimental and theoretical NMR chemical shift databases. We investigated the level of accuracy required for identification of metabolites in simulated pure and impure samples by matching predicted chemical shifts to experimental data. We found 90% or more of molecules in simulated pure samples can be successfully identified when errors of 1H and 13C chemical shifts in water are below 0.6 and 7.1 ppm, respectively, and below 0.5 and 4.6 ppm in chloroform solvation, respectively. In simulated complex mixtures, as the complexity of the mixture increased, greater accuracy of the calculated chemical shifts was required, as expected. However, if the number of molecules in the mixture is known, e.g., when NMR is combined with MS and sample complexity is low, the likelihood of confident molecular identification increased by 90%.

5.
Anal Chem ; 94(16): 6130-6138, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35430813

ABSTRACT

We present DEIMoS: Data Extraction for Integrated Multidimensional Spectrometry, a Python application programming interface (API) and command-line tool for high-dimensional mass spectrometry data analysis workflows that offers ease of development and access to efficient algorithmic implementations. Functionality includes feature detection, feature alignment, collision cross section (CCS) calibration, isotope detection, and MS/MS spectral deconvolution, with the output comprising detected features aligned across study samples and characterized by mass, CCS, tandem mass spectra, and isotopic signature. Notably, DEIMoS operates on N-dimensional data, largely agnostic to acquisition instrumentation; algorithm implementations simultaneously utilize all dimensions to (i) offer greater separation between features, thus improving detection sensitivity, (ii) increase alignment/feature matching confidence among data sets, and (iii) mitigate convolution artifacts in tandem mass spectra. We demonstrate DEIMoS with LC-IMS-MS/MS metabolomics data to illustrate the advantages of a multidimensional approach in each data processing step.


Subject(s)
Metabolomics , Tandem Mass Spectrometry , Algorithms , Chromatography, Liquid/methods , Metabolomics/methods , Software , Tandem Mass Spectrometry/methods
6.
J Am Soc Mass Spectrom ; 33(3): 482-490, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35041405

ABSTRACT

Proton affinity is a major factor in the atmospheric pressure chemical ionization of illicit drugs. The detection of illicit drugs by mass spectrometry and ion mobility spectrometry relies on the analytes having greater proton affinities than background species. Evaluating proton affinities for fentanyl and its analogues is informative for predicting the likelihood of ionization in different environments and for optimizing the compounds' ionization and detection, such as through the addition of dopant chemicals. Herein, density functional theory was used to computationally determine the proton affinity and gas-phase basicity of 15 fentanyl compounds and several relevant molecules as a reference point. The range of proton affinities for the fentanyl compounds was from 1018 to 1078 kJ/mol. Fentanyl compounds with the higher proton affinity values appeared to form a bridge between the oxygen on the amide and the protonated nitrogen on the piperidine ring based on models and calculated bond distances. Experiments with fragmentation of proton-bound clusters using atmospheric flow tube-mass spectrometry (AFT-MS) provided estimates of relative proton affinities and showed proton affinity values of fentanyl compounds >1000 kJ/mol, which were consistent with the computational results. The high proton affinities of fentanyl compounds facilitate their detection by ambient ionization techniques in complex environments. The detection limits of the fentanyl compounds with AFT-MS are in the low femtogram range, which demonstrates the feasibility of trace vapor drug detection.


Subject(s)
Fentanyl , Mass Spectrometry/methods , Atmospheric Pressure , Fentanyl/analogs & derivatives , Fentanyl/analysis , Fentanyl/chemistry , Gases/analysis , Gases/chemistry , Limit of Detection , Protons , Reproducibility of Results , Substance Abuse Detection/methods
7.
J Chem Inf Model ; 61(12): 5721-5725, 2021 12 27.
Article in English | MEDLINE | ID: mdl-34842435

ABSTRACT

We describe the Mass Spectrometry Adduct Calculator (MSAC), an automated Python tool to calculate the adduct ion masses of a parent molecule. Here, adduct refers to a version of a parent molecule [M] that is charged due to addition or loss of atoms and electrons resulting in a charged ion, for example, [M + H]+. MSAC includes a database of 147 potential adducts and adduct/neutral loss combinations and their mass-to-charge ratios (m/z) as extracted from the NIST/EPA/NIH Mass Spectral Library (NIST17), Global Natural Products Social Molecular Networking Public Spectral Libraries (GNPS), and MassBank of North America (MoNA). The calculator relies on user-selected subsets of the combined database to calculate expected m/z for adducts of molecules supplied as formulas. This tool is intended to help researchers create identification libraries to collect evidence for the presence of molecules in mass spectrometry data. While the included adduct database focuses on adducts typically detected during liquid chromatography-mass spectrometry analyses, users may supply their own lists of adducts and charge states for calculating expected m/z. We also analyzed statistics on adducts from spectra contained in the three selected mass spectral libraries. MSAC is freely available at https://github.com/pnnl/MSAC.


Subject(s)
Mass Spectrometry , Chromatography, Liquid/methods
8.
Chem Rev ; 121(10): 5633-5670, 2021 05 26.
Article in English | MEDLINE | ID: mdl-33979149

ABSTRACT

A primary goal of metabolomics studies is to fully characterize the small-molecule composition of complex biological and environmental samples. However, despite advances in analytical technologies over the past two decades, the majority of small molecules in complex samples are not readily identifiable due to the immense structural and chemical diversity present within the metabolome. Current gold-standard identification methods rely on reference libraries built using authentic chemical materials ("standards"), which are not available for most molecules. Computational quantum chemistry methods, which can be used to calculate chemical properties that are then measured by analytical platforms, offer an alternative route for building reference libraries, i.e., in silico libraries for "standards-free" identification. In this review, we cover the major roadblocks currently facing metabolomics and discuss applications where quantum chemistry calculations offer a solution. Several successful examples for nuclear magnetic resonance spectroscopy, ion mobility spectrometry, infrared spectroscopy, and mass spectrometry methods are reviewed. Finally, we consider current best practices, sources of error, and provide an outlook for quantum chemistry calculations in metabolomics studies. We expect this review will inspire researchers in the field of small-molecule identification to accelerate adoption of in silico methods for generation of reference libraries and to add quantum chemistry calculations as another tool at their disposal to characterize complex samples.


Subject(s)
Metabolomics , Quantum Theory
10.
Anal Chem ; 93(8): 3830-3838, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33606495

ABSTRACT

The prediction of structure dependent molecular properties, such as collision cross sections as measured using ion mobility spectrometry, are crucially dependent on the selection of the correct population of molecular conformers. Here, we report an in-depth evaluation of multiple conformation selection techniques, including simple averaging, Boltzmann weighting, lowest energy selection, low energy threshold reductions, and similarity reduction. Generating 50 000 conformers each for 18 molecules, we used the In Silico Chemical Library Engine (ISiCLE) to calculate the collision cross sections for the entire data set. First, we employed Monte Carlo simulations to understand the variability between conformer structures as generated using simulated annealing. Then we employed Monte Carlo simulations to the aforementioned conformer selection techniques applied on the simulated molecular property: the ion mobility collision cross section. Based on our analyses, we found Boltzmann weighting to be a good trade-off between precision and theoretical accuracy. Combining multiple techniques revealed that energy thresholds and root-mean-squared deviation-based similarity reductions can save considerable computational expense while maintaining property prediction accuracy. Molecular dynamic conformer generation tools like AMBER can continue to generate new lowest energy conformers even after tens of thousands of generations, decreasing precision between runs. This reduced precision can be ameliorated and theoretical accuracy increased by running density functional theory geometry optimization on carefully selected conformers.


Subject(s)
Ion Mobility Spectrometry , Molecular Dynamics Simulation , Molecular Conformation
11.
J Chem Inf Model ; 61(1): 481-492, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33404240

ABSTRACT

The α2a adrenoceptor is a medically relevant subtype of the G protein-coupled receptor family. Unfortunately, high-throughput techniques aimed at producing novel drug leads for this receptor have been largely unsuccessful because of the complex pharmacology of adrenergic receptors. As such, cutting-edge in silico ligand- and structure-based assessment and de novo deep learning methods are well positioned to provide new insights into protein-ligand interactions and potential active compounds. In this work, we (i) collect a dataset of α2a adrenoceptor agonists and provide it as a resource for the drug design community; (ii) use the dataset as a basis to generate candidate-active structures via deep learning; and (iii) apply computational ligand- and structure-based analysis techniques to gain new insights into α2a adrenoceptor agonists and assess the quality of the computer-generated compounds. We further describe how such assessment techniques can be applied to putative chemical probes with a case study involving proposed medetomidine-based probes.


Subject(s)
Deep Learning , Receptors, Adrenergic, alpha-2 , Ligands , Medetomidine
12.
Anal Chem ; 93(4): 1912-1923, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33467846

ABSTRACT

A growing number of software tools have been developed for metabolomics data processing and analysis. Many new tools are contributed by metabolomics practitioners who have limited prior experience with software development, and the tools are subsequently implemented by users with expertise that ranges from basic point-and-click data analysis to advanced coding. This Perspective is intended to introduce metabolomics software users and developers to important considerations that determine the overall impact of a publicly available tool within the scientific community. The recommendations reflect the collective experience of an NIH-sponsored Metabolomics Consortium working group that was formed with the goal of researching guidelines and best practices for metabolomics tool development. The recommendations are aimed at metabolomics researchers with little formal background in programming and are organized into three stages: (i) preparation, (ii) tool development, and (iii) distribution and maintenance.


Subject(s)
Cloud Computing , Metabolomics/methods , Software
13.
Phys Chem Chem Phys ; 23(2): 1197-1214, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33355332

ABSTRACT

Uncompetitive antagonists of the N-methyl d-aspartate receptor (NMDAR) have demonstrated therapeutic benefit in the treatment of neurological diseases such as Parkinson's and Alzheimer's, but some also cause dissociative effects that have led to the synthesis of illicit drugs. The ability to generate NMDAR antagonists in silico is therefore desirable for both new medication development and preempting and identifying new designer drugs. Recently, generative deep learning models have been applied to de novo drug design as a means to expand the amount of chemical space that can be explored for potential drug-like compounds. In this study, we assess the application of a generative model to the NMDAR to achieve two primary objectives: (i) the creation and release of a comprehensive library of experimentally validated NMDAR phencyclidine (PCP) site antagonists to assist the drug discovery community and (ii) an analysis of both the advantages conferred by applying such generative artificial intelligence models to drug design and the current limitations of the approach. We apply, and provide source code for, a variety of ligand- and structure-based assessment techniques used in standard drug discovery analyses to the deep learning-generated compounds. We present twelve candidate antagonists that are not available in existing chemical databases to provide an example of what this type of workflow can achieve, though synthesis and experimental validation of these compounds are still required.


Subject(s)
Deep Learning , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Small Molecule Libraries/chemistry , Animals , Binding Sites , Drug Design , Ligands , Mice , Molecular Structure , Receptors, N-Methyl-D-Aspartate/chemistry , Xenopus laevis
14.
J Chem Inf Model ; 60(12): 6251-6257, 2020 12 28.
Article in English | MEDLINE | ID: mdl-33283505

ABSTRACT

Thousands of chemical properties can be calculated for small molecules, which can be used to place the molecules within the context of a broader "chemical space." These definitions vary based on compounds of interest and the goals for the given chemical space definition. Here, we introduce a customizable Python module, chespa, built to easily assess different chemical space definitions through clustering of compounds in these spaces and visualizing trends of these clusters. To demonstrate this, chespa currently streamlines prediction of various molecular descriptors (predicted chemical properties, molecular substructures, AI-based chemical space, and chemical class ontology) in order to test six different chemical space definitions. Furthermore, we investigated how these varying definitions trend with mass spectrometry (MS)-based observability, that is, the ability of a molecule to be observed with MS (e.g., as a function of the molecule ionizability), using an example data set from the U.S. EPA's nontargeted analysis collaborative trial, where blinded samples had been analyzed previously, providing 1398 data points. Improved understanding of observability would offer many advantages in small-molecule identification, such as (i) a priori selection of experimental conditions based on suspected sample composition, (ii) the ability to reduce the number of candidate structures during compound identification by removing those less likely to ionize, and, in turn, (iii) a reduced false discovery rate and increased confidence in identifications. Factors controlling observability are not fully understood, making prediction of this property nontrivial and a prime candidate for chemical space analysis. Chespa is available at github.com/pnnl/chespa.


Subject(s)
Mass Spectrometry
15.
mSystems ; 5(3)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32518194

ABSTRACT

Increasing anthropogenic inputs of fixed nitrogen are leading to greater eutrophication of aquatic environments, but it is unclear how this impacts the flux and fate of carbon in lacustrine and riverine systems. Here, we present evidence that the form of nitrogen governs the partitioning of carbon among members in a genome-sequenced, model phototrophic biofilm of 20 members. Consumption of NO3 - as the sole nitrogen source unexpectedly resulted in more rapid transfer of carbon to heterotrophs than when NH4 + was also provided, suggesting alterations in the form of carbon exchanged. The form of nitrogen dramatically impacted net community nitrogen, but not carbon, uptake rates. Furthermore, this alteration in nitrogen form caused very large but focused alterations to community structure, strongly impacting the abundance of only two species within the biofilm and modestly impacting a third member species. Our data suggest that nitrogen metabolism may coordinate coupled carbon-nitrogen biogeochemical cycling in benthic biofilms and, potentially, in phototroph-heterotroph consortia more broadly. It further indicates that the form of nitrogen inputs may significantly impact the contribution of these communities to carbon partitioning across the terrestrial-aquatic interface.IMPORTANCE Anthropogenic inputs of nitrogen into aquatic ecosystems, and especially those of agricultural origin, involve a mix of chemical species. Although it is well-known in general that nitrogen eutrophication markedly influences the metabolism of aquatic phototrophic communities, relatively little is known regarding whether the specific chemical form of nitrogen inputs matter. Our data suggest that the nitrogen form alters the rate of nitrogen uptake significantly, whereas corresponding alterations in carbon uptake were minor. However, differences imposed by uptake of divergent nitrogen forms may result in alterations among phototroph-heterotroph interactions that rewire community metabolism. Furthermore, our data hint that availability of other nutrients (i.e., iron) might mediate the linkage between carbon and nitrogen cycling in these communities. Taken together, our data suggest that different nitrogen forms should be examined for divergent impacts on phototrophic communities in fluvial systems and that these anthropogenic nitrogen inputs may significantly differ in their ultimate biogeochemical impacts.

16.
J Chem Inf Model ; 59(9): 4052-4060, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31430141

ABSTRACT

The current gold standard for unambiguous molecular identification in metabolomics analysis is comparing two or more orthogonal properties from the analysis of authentic reference materials (standards) to experimental data acquired in the same laboratory with the same analytical methods. This represents a significant limitation for comprehensive chemical identification of small molecules in complex samples. The process is time consuming and costly, and the majority of molecules are not yet represented by standards. Thus, there is a need to assemble evidence for the presence of small molecules in complex samples through the use of libraries containing calculated chemical properties. To address this need, we developed a Multi-Attribute Matching Engine (MAME) and a library derived in part from our in silico chemical library engine (ISiCLE). Here, we describe an initial evaluation of these methods in a blinded analysis of synthetic chemical mixtures as part of the U.S. Environmental Protection Agency's (EPA) Non-Targeted Analysis Collaborative Trial (ENTACT, Phase 1). For molecules in all mixtures, the initial blinded false negative rate (FNR), false discovery rate (FDR), and accuracy were 57%, 77%, and 91%, respectively. For high evidence scores, the FDR was 35%. After unblinding of the sample compositions, we optimized the scoring parameters to better exploit the available evidence and increased the accuracy for molecules suspected as present. The final FNR, FDR, and accuracy were 67%, 53%, and 96%, respectively. For high evidence scores, the FDR was 10%. This study demonstrates that multiattribute matching methods in conjunction with in silico libraries may one day enable reduced reliance on experimentally derived libraries for building evidence for the presence of molecules in complex samples.


Subject(s)
Computational Biology/methods , Computer Simulation , Small Molecule Libraries/chemistry , Algorithms , Small Molecule Libraries/metabolism
17.
Anal Chem ; 91(18): 11952-11962, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31450886

ABSTRACT

We report on separations of ion isotopologues and isotopomers using ultrahigh-resolution traveling wave-based Structures for Lossless Ion Manipulations with serpentine ultralong path and extended routing ion mobility spectrometry coupled to mass spectrometry (SLIM SUPER IMS-MS). Mobility separations of ions from the naturally occurring ion isotopic envelopes (e.g., [M], [M+1], [M+2], ... ions) showed the first and second isotopic peaks (i.e., [M+1] and [M+2]) for various tetraalkylammonium ions could be resolved from their respective monoisotopic ion peak ([M]) after SLIM SUPER IMS with resolving powers of ∼400-600. Similar separations were obtained for other compounds (e.g., tetrapeptide ions). Greater separation was obtained using argon versus helium drift gas, as expected from the greater reduced mass contribution to ion mobility described by the Mason-Schamp relationship. To more directly explore the role of isotopic substitutions, we studied a mixture of specific isotopically substituted (15N, 13C, and 2H) protonated arginine isotopologues. While the separations in nitrogen were primarily due to their reduced mass differences, similar to the naturally occurring isotopologues, their separations in helium, where higher resolving powers could also be achieved, revealed distinct additional relative mobility shifts. These shifts appeared correlated, after correction for the reduced mass contribution, with changes in the ion center of mass due to the different locations of heavy atom substitutions. The origin of these apparent mass distribution-induced mobility shifts was then further explored using a mixture of Iodoacetyl Tandem Mass Tag (iodoTMT) isotopomers (i.e., each having the same exact mass, but with different isotopic substitution sites). Again, the observed mobility shifts appeared correlated with changes in the ion center of mass leading to multiple monoisotopic mobilities being observed for some isotopomers (up to a ∼0.04% difference in mobility). These mobility shifts thus appear to reflect details of the ion structure, derived from the changes due to ion rotation impacting collision frequency or momentum transfer, and highlight the potential for new approaches for ion structural characterization.


Subject(s)
Deuterium/chemistry , Carbon Isotopes/chemistry , Ion Mobility Spectrometry , Ions/chemistry , Ions/isolation & purification , Mass Spectrometry , Nitrogen Isotopes/chemistry
18.
Anal Chem ; 91(7): 4346-4356, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30741529

ABSTRACT

High-throughput, comprehensive, and confident identifications of metabolites and other chemicals in biological and environmental samples will revolutionize our understanding of the role these chemically diverse molecules play in biological systems. Despite recent technological advances, metabolomics studies still result in the detection of a disproportionate number of features that cannot be confidently assigned to a chemical structure. This inadequacy is driven by the single most significant limitation in metabolomics, the reliance on reference libraries constructed by analysis of authentic reference materials with limited commercial availability. To this end, we have developed the in silico chemical library engine (ISiCLE), a high-performance computing-friendly cheminformatics workflow for generating libraries of chemical properties. In the instantiation described here, we predict probable three-dimensional molecular conformers (i.e., conformational isomers) using chemical identifiers as input, from which collision cross sections (CCS) are derived. The approach employs first-principles simulation, distinguished by the use of molecular dynamics, quantum chemistry, and ion mobility calculations, to generate structures and chemical property libraries, all without training data. Importantly, optimization of ISiCLE included a refactoring of the popular MOBCAL code for trajectory-based mobility calculations, improving its computational efficiency by over 2 orders of magnitude. Calculated CCS values were validated against 1983 experimentally measured CCS values and compared to previously reported CCS calculation approaches. Average calculated CCS error for the validation set is 3.2% using standard parameters, outperforming other density functional theory (DFT)-based methods and machine learning methods (e.g., MetCCS). An online database is introduced for sharing both calculated and experimental CCS values ( metabolomics.pnnl.gov ), initially including a CCS library with over 1 million entries. Finally, three successful applications of molecule characterization using calculated CCS are described, including providing evidence for the presence of an environmental degradation product, the separation of molecular isomers, and an initial characterization of complex blinded mixtures of exposure chemicals. This work represents a method to address the limitations of small molecule identification and offers an alternative to generating chemical identification libraries experimentally by analyzing authentic reference materials. All code is available at github.com/pnnl .


Subject(s)
Cheminformatics/methods , Density Functional Theory , Small Molecule Libraries/chemistry , Machine Learning , Models, Chemical , Molecular Dynamics Simulation
19.
J Nat Prod ; 82(3): 440-448, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30295480

ABSTRACT

A series of Wrightia hanleyi extracts was screened for activity against Mycobacterium tuberculosis H37Rv. One active fraction contained a compound that initially appeared to be either the isoflavonoid wrightiadione or the alkaloid tryptanthrin, both of which have been previously reported in other Wrightia species. Characterization by NMR and MS, as well as evaluation of the literature describing these compounds, led to the conclusion that wrightiadione (1) was misidentified in the first report of its isolation from W. tomentosa in 1992 and again in 2015 when reported in W. pubescens and W. religiosa. Instead, the molecule described in these reports and in the present work is almost certainly the isobaric (same nominal mass) and isosteric (same number of atoms, valency, and shape) tryptanthrin (2), a well-known quinazolinone alkaloid found in a variety of plants including Wrightia species. Tryptanthrin (2) is also accessible synthetically via several routes and has been thoroughly characterized. Wrightiadione (1) has been synthesized and characterized and may have useful biological activity; however, this compound can no longer be said to be known to exist in Nature. To our knowledge, this misidentification of wrightiadione (1) has heretofore been unrecognized.


Subject(s)
Antitubercular Agents/isolation & purification , Apocynaceae/chemistry , Quinazolines/isolation & purification , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy , Isoflavones , Mass Spectrometry , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/drug effects , Proton Magnetic Resonance Spectroscopy , Quinazolines/chemistry , Quinazolines/pharmacology
20.
Analyst ; 144(3): 794-807, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30507980

ABSTRACT

Mass-spectrometry based omics technologies - namely proteomics, metabolomics and lipidomics - have enabled the molecular level systems biology investigation of organisms in unprecedented detail. There has been increasing interest for gaining a thorough, functional understanding of the biological consequences associated with cellular heterogeneity in a wide variety of research areas such as developmental biology, precision medicine, cancer research and microbiome science. Recent advances in mass spectrometry (MS) instrumentation and sample handling strategies are quickly making comprehensive omics analyses of single cells feasible, but key breakthroughs are still required to push through remaining bottlenecks. In this review, we discuss the challenges faced by single cell MS-based omics analyses and highlight recent technological advances that collectively can contribute to comprehensive and high throughput omics analyses in single cells. We provide a vision of the potential of integrating pioneering technologies such as Structures for Lossless Ion Manipulations (SLIM) for improved sensitivity and resolution, novel peptide identification tactics and standards free metabolomics approaches for future applications in single cell analysis.


Subject(s)
Genomics/methods , Mass Spectrometry/methods , Metabolomics/methods , Proteomics/methods , Single-Cell Analysis/methods , Humans , Precision Medicine , Systems Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...