Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hear Res ; 381: 107763, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31387072

ABSTRACT

Direct drive bone conduction devices (BCDs) are used to rehabilitate patients with conductive or mixed hearing loss by stimulating the skull bone directly, either with an implanted transducer (active transcutaneous BCDs), or through a skin penetrating abutment rigidly coupled to an external vibrating transducer (percutaneous BCDs). Active transcutaneous BCDs have been under development to overcome limitations of the percutaneous bone anchored hearing aid (BAHA), mainly related to the skin penetration. The attachment of a direct drive BCD to the skull bone can differ significantly between devices, and possibly influence the vibrations' transmission to the cochleae. In this study, four different attachments are considered: (A) small-sized flat surface, (B) extended flat surface, (C) bar with a screw at both ends, and (D) standard bone anchored hearing aid screw. A, B, and C represent three active transcutaneous options, while D is for percutaneous applications. The primary aim of this study was to investigate how the different transcutaneous attachments (A, B, and C) affect the transmission of vibrations to the cochleae to the ipsilateral and the contralateral side. A secondary aim was to evaluate and compare transcranial attenuation (TA, ipsilateral minus contralateral signal level) between transcutaneous (A, B, and C) and percutaneous attachments (D). Measurements were performed on four human heads, measuring cochlear promontory velocity with a LDV (laser Doppler vibrometer) and sound pressure in the ear canal (ECSP) with an inserted microphone. The stimulation signal was a swept sine between 0.1 and 10 kHz. The comparison of ipsilateral transmission between transcutaneous adaptors A, B, and C was in agreement with previous findings, confirming that: (1) Adaptor C seems to give the most effective transmission for frequencies around 6 kHz but somewhat lower in the mid frequency range, and (2) keeping a smaller contact area seems to provide advantages compared to a more extended one. The same trends were seen ipsilaterally and contralaterally. The observed TA was similar for adaptors A, B, and C at the mastoid position, ranging -10-0 dB below 500 Hz, and 10-20 dB above. A lower TA was seen above 500 Hz when using adaptor D at the parietal position.


Subject(s)
Bone Conduction , Bone-Anchored Prosthesis , Cochlea/physiopathology , Hearing Aids , Hearing Loss/rehabilitation , Mastoid/surgery , Parietal Bone/surgery , Persons With Hearing Impairments/rehabilitation , Prosthesis Implantation/instrumentation , Cadaver , Female , Hearing Loss/physiopathology , Humans , Male , Mechanotransduction, Cellular , Prosthesis Design , Vibration
2.
Hear Res ; 361: 103-112, 2018 04.
Article in English | MEDLINE | ID: mdl-29429820

ABSTRACT

Active transcutaneous bone conduction devices, where the transducer is implanted, are used for rehabilitation of hearing impaired patients by directly stimulating the skull bone. The transducer and the way it is attached to the bone play a central role in the design of such devices. The actual effect of varying the contact to bone has not been addressed yet. The aim of this study is therefore to compare how different attachment methods of the transducer to the bone for direct stimulation affect the ear canal sound pressure and vibration transmission to the ipsilateral cochlea. Three different attachments to the bone were tested: (A) via a flat small-sized surface, (B) via a flat wide surface and (C) via two separated screws. Measurements were done on four human heads on both sides. The attachments were compared in terms of induced cochlear promontory velocity, measured by a laser Doppler vibrometer, and ear canal sound pressure, measured by a low noise microphone. A swept sine stimulus was used in the frequency range 0.1-10 kHz. On an average level, the attachment method seems to affect the transmission mainly at frequencies above 5 kHz. Furthermore, the results suggest that a smaller contact surface might perform better in terms of transmission of vibrations at mid and high frequencies. However, when considering the whole frequency range, average results from the different attachment techniques are comparable.


Subject(s)
Auditory Perception , Bone Conduction , Hearing Aids , Hearing Disorders/therapy , Persons With Hearing Impairments/rehabilitation , Transducers , Aged , Aged, 80 and over , Bone Screws , Cadaver , Cochlea/physiopathology , Ear Canal/physiopathology , Equipment Design , Female , Hearing Disorders/diagnosis , Hearing Disorders/physiopathology , Hearing Disorders/psychology , Humans , Male , Materials Testing , Mechanotransduction, Cellular , Middle Aged , Persons With Hearing Impairments/psychology , Pressure , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...