Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Stress Chaperones ; 28(3): 333-341, 2023 05.
Article in English | MEDLINE | ID: mdl-37020080

ABSTRACT

Cellular stress and inflammation contribute to the initiation and progression of a variety of pulmonary diseases. Endoplasmic reticulum (ER) stress and its main regulator GRP78 (glucose-regulated protein 78 kDa) appear to be involved in the pathogenesis of pulmonary diseases, and GRP78 was found to be a biomarker in a wide range of inflammatory diseases. The aim of this study was to investigate the relevance of serum GRP78 in pulmonary disorders.In this prospective cohort study, 78 consecutive patients with chronic obstructive pulmonary disease (COPD, n = 28), asthma (n = 38) or interstitial lung disease (ILD, n = 12) underwent measurement of serum GRP78 levels by ELISA.The mean age of patients was 59.8 ± 12.4 years, 48.7% were female. Patients with elevated GRP78 levels (> median) offered a significantly better oxygenation status (capillary pO2: 75.3 ± 11.7 mmHg vs. 67.8 ± 15.9 mmHg, p = 0.02). Significant correlations were observed between GRP78, on the one hand, and haemoglobin, high-sensitivity C-reactive protein (hs-CRP) and eosinophil counts, on the other hand (haemoglobin: Pearson's r = -0.25, hs-CRP: r = 0.30, eosinophils: r = 0.63).Subsequently, we evaluated GRP78 measurements in function of severity stratifiers of the specific underlying pulmonary disease. ILD patients with a severe diffusion impairment (DLCO< 40% of predicted), exhibited a significant decrease in GRP78 levels (p = 0.01). In COPD and asthma, both characterized by obstructive ventilatory defects, a forced expiratory volume in one second (FEV1) <30% of predicted was accompanied by significantly lower GRP78 (p = 0.0075).In both obstructive and restrictive pulmonary disorders, GRP78 protein concentrations were reduced with increasing disease severity. These data suggest a prevalent role of GRP78 in the presently studied pulmonary disorders.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Humans , Female , Middle Aged , Aged , Male , Endoplasmic Reticulum Chaperone BiP , C-Reactive Protein/metabolism , Prospective Studies , Endoplasmic Reticulum Stress , Biomarkers/metabolism , Glucose
2.
Cell Stress Chaperones ; 27(5): 561-572, 2022 09.
Article in English | MEDLINE | ID: mdl-36029373

ABSTRACT

Pulmonary arterial hypertension (PAH) is driven by vascular remodelling due to inflammation and cellular stress, including endoplasmic reticulum stress (ER stress). The main ER-stress chaperone, glucose-regulated protein 78 kDa (GRP78), is known to have protective effects in inflammatory diseases through extracellular signalling. The aim of this study is to investigate its significance in PAH. Human pulmonary arterial smooth muscle cells (PASMC) were stimulated with compounds that induce ER stress, after which the secretion of GRP78 into the cell medium was analysed by western blot. We found that when ER stress was induced in PASMC, there was also a time-dependent secretion of GRP78. Next, naïve PASMC were treated with conditioned medium (CM) from the ER-stressed donor PASMC. Incubation with CM from ER-stressed PASMC reduced the viability, oxidative stress, and expression of inflammatory and ER-stress markers in target cells. These effects were abrogated when the donor cells were co-treated with Brefeldin A to inhibit active secretion of GRP78. Direct treatment of PASMC with recombinant GRP78 modulated the expression of key inflammatory markers. Additionally, we measured GRP78 plasma levels in 19 PAH patients (Nice Group I) and correlated the levels to risk stratification according to ESC guidelines. Here, elevated plasma levels of GRP78 were associated with a favourable risk stratification. In conclusion, GRP78 is secreted by PASMC under ER stress and exhibits protective effects from the hallmarks of PAH in vitro. Circulating GRP78 may serve as biomarker for risk adjudication of patients with PAH. Proposed mechanism of ER-stress-induced GRP78 secretion by PASMC. Extracellular GRP78 can be measured as a circulating biomarker and is correlated with favourable clinical characteristics. Conditioned medium from ER-stressed PASMC reduces extensive viability, ROS formation, inflammation, and ER stress in target cells. These effects can be abolished by blocking protein secretion in donor cells by using Brefeldin A.


Subject(s)
Hypertension, Pulmonary , Pulmonary Artery , Brefeldin A/metabolism , Brefeldin A/pharmacology , Brefeldin A/therapeutic use , Cell Proliferation , Cells, Cultured , Culture Media, Conditioned/pharmacology , Glucose/metabolism , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Inflammation/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/metabolism , Reactive Oxygen Species/metabolism , Vascular Remodeling
3.
Front Cardiovasc Med ; 8: 708946, 2021.
Article in English | MEDLINE | ID: mdl-34778390

ABSTRACT

Background: Vitamin K antagonists (VKA) are known to promote adverse cardiovascular remodeling. Contrarily, vitamin K supplementation has been discussed to decelerate cardiovascular disease. The recently described VKOR-isoenzyme Vitamin K epoxide reductase complex subunit 1-like 1 (VKORC1L1) is involved in vitamin K maintenance and exerts antioxidant properties. In this study, we sought to investigate the role of VKORC1L1 in neointima formation and on vascular smooth muscle cell (VSMC) function. Methods and Results: Treatment of wild-type mice with Warfarin, a well-known VKA, increased maladaptive neointima formation after carotid artery injury. This was accompanied by reduced vascular mRNA expression of VKORC1L1. In vitro, Warfarin was found to reduce VKORC1L1 mRNA expression in VSMC. VKORC1L1-downregulation by siRNA promoted viability, migration and formation of reactive oxygen species. VKORC1L1 knockdown further increased expression of key markers of vascular inflammation (NFκB, IL-6). Additionally, downregulation of the endoplasmic reticulum (ER) membrane resident VKORC1L1 increased expression of the main ER Stress moderator, glucose-regulated protein 78 kDa (GRP78). Moreover, treatment with the ER Stress inducer tunicamycin promoted VKORC1L1, but not VKORC1 expression. Finally, we sought to investigate, if treatment with vitamin K can exert protective properties on VSMC. Thus, we examined effects of menaquinone-7 (MK7) on VSMC phenotype switch. MK7 treatment dose-dependently alleviated PDGF-induced proliferation and migration. In addition, we detected a reduction in expression of inflammatory and ER Stress markers. Conclusion: VKA treatment promotes neointima formation after carotid wire injury. In addition, VKA treatment reduces aortal VKORC1L1 mRNA expression. VKORC1L1 inhibition contributes to an adverse VSMC phenotype, while MK7 restores VSMC function. Thus, MK7 supplementation might be a feasible therapeutic option to modulate vitamin K- and VKORC1L1-mediated vasculoprotection.

4.
Transl Res ; 233: 117-126, 2021 07.
Article in English | MEDLINE | ID: mdl-33684593

ABSTRACT

Chronic kidney disease (CKD) is a frequent comorbidity of aortic valve stenosis (AVS). Circulating chaperones have emerged as both effectors and prognostic markers for various diseases. We investigated the role of circulating chaperones in patients with severe AVS undergoing transcatheter aortic valve replacement (TAVR). In this observational cohort study, 159 consecutive patients undergoing TAVR were included and serum levels of Glucose-regulated protein 78 (GRP78) and heat shock protein 27 (HSP27) were measured by ELISA. The primary end point was defined as 1-year mortality. Patients with lower levels of circulating GRP78 (<1347 ng/mL) had an increased 1-year mortality rate compared to patients with higher levels of GRP78 (25.0% vs 10.3%, P = 0.026). GRP78 was associated with lower 1-year mortality in a univariate analysis (HR 0.354, P = 0.047). After adjusting for age, sex, several comorbidities and biomarkers, GRP78 (HR 0.295, P = 0.024) and CKD (HR 2.809, P = 0.044) remained independent predictors of the primary end point of 1-year mortality in a multivariate analysis. Patients with concomitant CKD had significantly higher levels of HSP27 compared to patients without CKD (1690 pg/mL vs 1076 pg/mL, P = 0.0109). In patients with CKD, elevated HSP27 was identified as a protective marker (1-year mortality: 9.6% vs 31.4%, log-rank P = 0.0166). Using cut-off values for GRP78 and HSP27 we were able to stratify patients with CKD undergoing TAVR into 4 groups with distinct mortality rates (50% vs 22.2% vs 24% vs 7.9%, log-rank P = 0.0170). GRP78 is an overall predictor of mortality after TAVR, while the combination of GRP78 and HSP27 helps to predict mortality in patients with CKD receiving TAVR.


Subject(s)
Aortic Valve Stenosis/blood , Aortic Valve Stenosis/surgery , Heat-Shock Proteins/blood , Molecular Chaperones/blood , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/complications , Transcatheter Aortic Valve Replacement , Aged , Aged, 80 and over , Aortic Valve Stenosis/complications , Biomarkers/blood , Cohort Studies , Endoplasmic Reticulum Chaperone BiP , Female , Humans , Kaplan-Meier Estimate , Male , Prognosis , Risk Factors , Transcatheter Aortic Valve Replacement/mortality , Translational Research, Biomedical
SELECTION OF CITATIONS
SEARCH DETAIL