Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ambio ; 51(2): 471-483, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34874530

ABSTRACT

The Arctic is undergoing unprecedented change. Observations and models demonstrate significant perturbations to the physical and biological systems. Arctic species and ecosystems, particularly in the marine environment, are subject to a wide range of pressures from human activities, including exposure to a complex mixture of pollutants, climate change and fishing activity. These pressures affect the ecosystem services that the Arctic provides. Current international policies are attempting to support sustainable exploitation of Arctic resources with a view to balancing human wellbeing and environmental protection. However, assessments of the potential combined impacts of human activities are limited by data, particularly related to pollutants, a limited understanding of physical and biological processes, and single policies that are limited to ecosystem-level actions. This manuscript considers how, when combined, a suite of existing tools can be used to assess the impacts of pollutants in combination with other anthropogenic pressures on Arctic ecosystems, and on the services that these ecosystems provide. Recommendations are made for the advancement of targeted Arctic research to inform environmental practices and regulatory decisions.


Subject(s)
Anthropogenic Effects , Ecosystem , Arctic Regions , Humans , Hunting , Oceans and Seas
2.
Bull Environ Contam Toxicol ; 100(1): 134-146, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29285590

ABSTRACT

Legislation such as the Stockholm Convention and REACH aim to identify and regulate the production and use of chemicals that qualify as persistent organic pollutants (POPs) and very persistent and very bioaccumulative (vPvB) chemicals, respectively. Recently, a series of studies on planetary boundary threats proposed seven chemical hazard profiles that are distinct from the POP and vPvB profiles. We previously defined two exposure-based hazard profiles; airborne persistent contaminants (APCs) and waterborne persistent contaminants (WPCs) that correspond to two profiles of chemicals that are planetary boundary threats. Here, we extend our method to screen a database of chemicals consisting of 8648 substances produced within the OECD countries. We propose a new scoring scheme to disentangle the POP, vPvB, APC and WPC profiles by focusing on the spatial range of exposure potential, discuss the relationship between high exposure hazard and elemental composition of chemicals, and identify chemicals with high exposure hazard potential.


Subject(s)
Computer Simulation , Environmental Monitoring/methods , Environmental Pollutants/analysis , Hazardous Substances/analysis , Organisation for Economic Co-Operation and Development , Organic Chemicals/chemistry
3.
Environ Sci Process Impacts ; 18(6): 667-76, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27158699

ABSTRACT

Polymeric materials flowing through the technosphere are repositories of organic chemicals throughout their life cycle. Equilibrium partition ratios of organic chemicals between these materials and air (KMA) or water (KMW) are required for models of fate and transport, high-throughput exposure assessment and passive sampling. KMA and KMW have been measured for a growing number of chemical/material combinations, but significant data gaps still exist. We assembled a database of 363 KMA and 910 KMW measurements for 446 individual compounds and nearly 40 individual polymers and biopolymers, collected from 29 studies. We used the EPI Suite and ABSOLV software packages to estimate physicochemical properties of the compounds and we employed an empirical correlation based on Trouton's rule to adjust the measured KMA and KMW values to a standard reference temperature of 298 K. Then, we used a thermodynamic triangle with Henry's law constant to calculate a complete set of 1273 KMA and KMW values. Using simple linear regression, we developed a suite of single parameter linear free energy relationship (spLFER) models to estimate KMA from the EPI Suite-estimated octanol-air partition ratio (KOA) and KMW from the EPI Suite-estimated octanol-water (KOW) partition ratio. Similarly, using multiple linear regression, we developed a set of polyparameter linear free energy relationship (ppLFER) models to estimate KMA and KMW from ABSOLV-estimated Abraham solvation parameters. We explored the two LFER approaches to investigate (1) their performance in estimating partition ratios, and (2) uncertainties associated with treating all different polymers as a single "bulk" polymeric material compartment. The models we have developed are suitable for screening assessments of the tendency for organic chemicals to be emitted from materials, and for use in multimedia models of the fate of organic chemicals in the indoor environment. In screening applications we recommend that KMA and KMW be modeled as 0.06 ×KOA and 0.06 ×KOW respectively, with an uncertainty range of a factor of 15.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Models, Chemical , Organic Chemicals/analysis , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/analysis , Air Pollutants/chemistry , Linear Models , Organic Chemicals/chemistry , Polymers/analysis , Polymers/chemistry , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...