Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cells ; 10(4)2021 04 07.
Article in English | MEDLINE | ID: mdl-33916893

ABSTRACT

The transcriptional regulator WW domain-containing oxidoreductase (WWOX) is a key player in a number of cellular and biological processes including tumor suppression. Recent evidence has emerged associating WWOX with non-cancer disorders. Patients harboring pathogenic germline bi-allelic WWOX variants have been described with the rare devastating neurological syndromes autosomal recessive spinocerebellar ataxia 12 (SCAR12) (6 patients) and WWOX-related epileptic encephalopathy (DEE28 or WOREE syndrome) (56 patients). Individuals with these syndromes present with a highly heterogenous clinical spectrum, the most common clinical symptoms being severe epileptic encephalopathy and profound global developmental delay. Knowledge of the underlying pathophysiology of these syndromes, the range of variants of the WWOX gene and its genotype-phenotype correlations is limited, hampering therapeutic efforts. Therefore, there is a critical need to identify and consolidate all the reported variants in WWOX to distinguish between disease-causing alleles and their associated severity, and benign variants, with the aim of improving diagnosis and increasing therapeutic efforts. Here, we provide a comprehensive review of the literature on WWOX, and analyze the pathogenic variants from published and unpublished reports by collecting entries from the ClinVar, DECIPHER, VarSome, and PubMed databases to generate the largest dataset of WWOX pathogenic variants. We estimate the correlation between variant type and patient phenotype, and delineate the impact of each variant, and used GnomAD to cross reference these variants found in the general population. From these searches, we generated the largest published cohort of WWOX individuals. We conclude with a discussion on potential personalized medicine approaches to tackle the devastating disorders associated with WWOX mutations.


Subject(s)
Germ-Line Mutation/genetics , Nervous System Diseases/genetics , WW Domain-Containing Oxidoreductase/genetics , Epilepsy/genetics , Humans , Phenotype , Precision Medicine
2.
J Cell Sci ; 126(Pt 7): 1650-8, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23424195

ABSTRACT

WISP3 (Wnt induced secreted protein 3) is a multi-domain protein of mesenchymal origin. Mutations in several domains of WISP3 cause PPRD (progressive pseudo rheumatoid dysplasia), which is associated with cartilage loss and restricted skeletal development. Despite several studies focusing on the functional characterization of WISP3, the molecular details underlying the course of PPRD remain unresolved. We are interested in analyzing the function of WISP3 in the context of cartilage integrity. The current study demonstrates that WISP3 binds to insulin-like growth factor 1 (IGF1) and inhibits IGF1 secretion. Additionally, WISP3 curbs IGF1-mediated collagen X expression, accumulation of reactive oxygen species (ROS) and alkaline phosphatase activity, all of which are associated with the induction of chondrocyte hypertrophy. Interestingly, both IGF1 and ROS in turn trigger an increase in WISP3 expression. Together, our results are indicative of an operational WISP3-IGF1 regulatory loop whereby WISP3 preserves cartilage integrity by restricting IGF1-mediated hypertrophic changes in chondrocytes, at least partly, upon interaction with IGF1.


Subject(s)
CCN Intercellular Signaling Proteins/metabolism , Chondrocytes/cytology , Chondrocytes/metabolism , Insulin-Like Growth Factor I/metabolism , Cell Enlargement , Cell Line , Humans , Immunoblotting , Immunoprecipitation , Protein Binding , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...