Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Model Mech ; 16(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37565267

ABSTRACT

Hereditary spastic paraplegia (HSP) is a group of degenerative neurological disorders. We identified a variant in human kinesin light chain 4 (KLC4) that is suspected to be associated with autosomal-dominant HSP. How this and other variants relate to pathologies is unknown. We created a humanized Caenorhabditis elegans model in which klc-2 was replaced by human KLC4 (referred to as hKLC4) and assessed the extent to which hKLC4 retained function in the worm. We observed a slight decrease in motility but no nuclear migration defects in the humanized worms, suggesting that hKLC4 retains much of the function of klc-2. Five hKLC4 variants were introduced into the humanized model. The clinical variant led to early lethality, with significant defects in nuclear migration when homozygous and a weak nuclear migration defect when heterozygous, possibly correlating with the clinical finding of late-onset HSP when the proband was heterozygous. Thus, we were able to establish humanized C. elegans as an animal model for HSP and to use it to test the significance of five variants of uncertain significance in the human gene KLC4.


Subject(s)
Spastic Paraplegia, Hereditary , Animals , Humans , Spastic Paraplegia, Hereditary/genetics , Caenorhabditis elegans/genetics , Mutation/genetics , Models, Animal , Biological Transport , Pedigree
2.
bioRxiv ; 2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36789438

ABSTRACT

Hereditary spastic paraplegia (HSP) is a group of degenerative neurological disorders. We identified a variant in human kinesin light chain KLC4 that is suspected to be associated with autosomal dominant HSP. How this and other variants relate to pathologies is unknown. We created a humanized C. elegans model where klc- 2 was replaced with human KLC4 and assessed the extent to which hKLC4 retained function in the worm. We observed a slight decrease in motility but no nuclear migration defects in the humanized worms, suggesting that hKLC4 retains much of the function of klc-2 . Five hKLC4 variants were introduced into the humanized model. The clinical variant led to early lethality with significant defects in nuclear migration when homozygous, and a weak nuclear migration defect when heterozygous, possibly correlating with the clinical finding of late onset HSP when the proband was heterozygous. Thus, we were able to establish humanized C. elegans as an animal model for HSP and use it to test the significance of five variants of uncertain significance in the human gene KLC4 . Summary Statement: We identified a variant in KLC4 associated with Hereditary Spastic Paraplegia. The variant had physiological relevance in a humanized C. elegans model where we replaced klc-2 with human KLC4 .

4.
PLoS One ; 10(7): e0131847, 2015.
Article in English | MEDLINE | ID: mdl-26147286

ABSTRACT

Ultraviolet radiation is known to be highly variable in aquatic ecosystems. It has been suggested that UV-exposed organisms may demonstrate enough phenotypic plasticity to maintain the relative fitness of natural populations. Our long-term objective is to determine the potential photoprotective effect of vitamin D3 on Daphnia pulex exposed to acute or chronic UV radiation. Herein we report our initial findings in this endeavor. D. pulex survival and reproduction (fitness) was monitored for 5 d as a proof of concept study. Significantly higher fitness was observed in the D. pulex with D3 than those without (most extreme effects observed were 0% survival in the absence of D3 and 100% with 10 ppm D3). Vitamin D3 was isolated from the culture media, the algal food (Pseudokirchneriella), and the D. pulex and quantified using high performance liquid chromatography (HPLC). Vitamin D3 was fluorescently labeled using a phenothiazinium dye and added to cultures of D. pulex. Images demonstrating the uptake of D3 into the tissues and carapace of the D. pulex were acquired. Our initial findings suggest a positive role for D3 in ecosystems as both UV-stressed algae and Daphnia sequester D3, and D. pulex demonstrate increased fitness in the presence of D3.


Subject(s)
Cholecalciferol/metabolism , Daphnia/radiation effects , Ultraviolet Rays , Animals , Chromatography, High Pressure Liquid , Daphnia/metabolism , Daphnia/physiology , Ecosystem , Microalgae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...