Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Br Poult Sci ; 59(6): 624-628, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30141691

ABSTRACT

1. The aim of the following experiment was to estimate transgenerational epigenetic variance for egg quality traits using genealogical and phenotypic information in meat-type quail. Measured traits included egg length (EL) and width (EWD), albumen weight (AW), shell weight (SW), yolk weight (YW) and egg weight (EW). 2. A total of 391 birds were evaluated for egg quality by collecting a sample of one egg per bird, during three consecutive days, starting on the 14th d of production. Analyses were performed using mixed models including the random epigenetic effect. Variance components were estimated by the restricted maximum likelihood method. A grid-search for values for the auto-recursive parameter (λ) was used in the variance components estimation. This parameter is directly related to the reset (v) and epigenetic transmissibility (1 - v) coefficients. 3. The epigenetic effect was not significant for any of the egg quality traits evaluated. Direct heritability estimates for egg quality traits ranged in magnitude from 0.06 to 0.33, whereby the higher estimates were found for AW and SW. Epigenetic heritability estimates were low and close to zero (ranging from 0.00 to 0.07) for all evaluated traits. 4. The current breeding strategies accounting for additive genetic effect seem to be suitable for egg quality traits in meat-type quail.


Subject(s)
Coturnix/genetics , Eggs , Epigenesis, Genetic/genetics , Meat , Animals , Breeding/methods , Female , Food Quality , Genetic Variation/genetics , Male , Quantitative Trait, Heritable
2.
J Anim Breed Genet ; 135(3): 178-185, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29878492

ABSTRACT

We aimed to estimate transgenerational epigenetic variance for body weight using genealogical and phenotypic information in meat quails. Animals were individually weighted from 1 week after hatching, with weight records at 7, 14, 21, 28, 35 and 42 days of age (BW7, BW14, BW21, BW28, BW35 and BW42, respectively). Single-trait genetic analyses were performed using mixed models with random epigenetic effects. Variance components were estimated by the restricted maximum likelihood method. A grid search for values of autorecursive parameter (λ) ranging from 0 to 0.5 was used in the variance component estimation. This parameter is directly related to the reset coefficient (ν) and the epigenetic coefficient of transmissibility (1-ν). The epigenetic effect was only significant for BW7. Direct heritability estimates for body weight ranged in magnitude (from 0.15 to 0.26), with the highest estimate for BW7. Epigenetic heritability was 0.10 for BW7, and close to zero for the other body weights. The inclusion of the epigenetic effect in the model helped to explain the residual and non-Mendelian variability of initial body weight in meat quails.


Subject(s)
Body Weight , Epigenomics/methods , Genetic Variation , Meat , Quail/anatomy & histology , Quail/genetics , Quantitative Trait, Heritable , Animals , Female , Male , Phenotype
3.
Genet Mol Res ; 16(3)2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28973734

ABSTRACT

The aim of this study was to evaluate repeated measures over the years to estimate repeatability coefficient and the number of the optimum measure to select superior genotypes in Annona muricata L. The fruit production was evaluated over 16 years in 71 genotypes without an experimental design. The estimation of variance components and the prediction of the permanent phenotypic value were performed using REML/BLUP proceedings. The coefficient of determination, accuracy, and selective efficiency increased when measures increased. The coefficient of determination of 80% was reached beyond 8 crop seasons with high accuracy and selective efficiency. Thus, the evaluation of 8 crop seasons can be suitable to select superior genotypes in the A. muricata L. breeding program. Predicted selection gain had a high magnitude for fruit production indicating that it is possible to take a progressive genetic advance for this trait over cycle breeding.


Subject(s)
Annona/genetics , Genotype , Plant Breeding/methods , Selection, Genetic , Plant Breeding/standards , Polymorphism, Genetic , Selective Breeding
4.
Heredity (Edinb) ; 119(4): 245-255, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28900291

ABSTRACT

We report a genomic selection (GS) study of growth and wood quality traits in an outbred F2 hybrid Eucalyptus population (n=768) using high-density single-nucleotide polymorphism (SNP) genotyping. Going beyond previous reports in forest trees, models were developed for different selection targets, namely, families, individuals within families and individuals across the entire population using a genomic model including dominance. To provide a more breeder-intelligible assessment of the performance of GS we calculated the expected response as the percentage gain over the population average expected genetic value (EGV) for different proportions of genomically selected individuals, using a rigorous cross-validation (CV) scheme that removed relatedness between training and validation sets. Predictive abilities (PAs) were 0.40-0.57 for individual selection and 0.56-0.75 for family selection. PAs under an additive+dominance model improved predictions by 5 to 14% for growth depending on the selection target, but no improvement was seen for wood traits. The good performance of GS with no relatedness in CV suggested that our average SNP density (~25 kb) captured some short-range linkage disequilibrium. Truncation GS successfully selected individuals with an average EGV significantly higher than the population average. Response to GS on a per year basis was ~100% more efficient than by phenotypic selection and more so with higher selection intensities. These results contribute further experimental data supporting the positive prospects of GS in forest trees. Because generation times are long, traits are complex and costs of DNA genotyping are plummeting, genomic prediction has good perspectives of adoption in tree breeding practice.


Subject(s)
Breeding , Eucalyptus/physiology , Models, Genetic , Selection, Genetic , Eucalyptus/genetics , Genomics , Genotype , Polymorphism, Single Nucleotide
5.
Genet Mol Res ; 16(3)2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28829902

ABSTRACT

Cotton produces one of the most important textile fibers of the world and has great relevance in the world economy. It is an economically important crop in Brazil, which is the world's fifth largest producer. However, studies evaluating the genotype x environment (G x E) interactions in cotton are scarce in this country. Therefore, the goal of this study was to evaluate the G x E interactions in two important traits in cotton (fiber yield and fiber length) using the method proposed by Eberhart and Russell (simple linear regression) and reaction norm models (random regression). Eight trials with sixteen upland cotton genotypes, conducted in a randomized block design, were used. It was possible to identify a genotype with wide adaptability and stability for both traits. Reaction norm models have excellent theoretical and practical properties and led to more informative and accurate results than the method proposed by Eberhart and Russell and should, therefore, be preferred. Curves of genotypic values as a function of the environmental gradient, which predict the behavior of the genotypes along the environmental gradient, were generated. These curves make possible the recommendation to untested environmental levels.


Subject(s)
Gene-Environment Interaction , Gossypium/genetics , Genotype , Models, Genetic , Quantitative Trait, Heritable
6.
Genet Mol Res ; 16(3)2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28829904

ABSTRACT

The aim of this study was to estimate the genotypic gain with simultaneous selection of production, nutrition, and culinary traits in cowpea crosses and backcrosses and to compare different selection indexes. Eleven cowpea populations were evaluated in a randomized complete block design with four replications. Fourteen traits were evaluated, and the following parameters were estimated: genotypic variation coefficient, genotypic determination coefficient, experimental quality indicator and selection reliability, estimated genotypic values ​​- BLUE, genotypic correlation coefficient among traits, and genotypic gain with simultaneous selection of all traits. The genotypic gain was estimated based on tree selection indexes: classical, multiplicative, and the sum of ranks. The genotypic variation coefficient was higher than the environmental variation coefficient for the number of days to start flowering, plant type, the weight of one hundred grains, grain index, and protein concentration. The majority of the traits presented genotypic determination coefficient from medium to high magnitude. The identification of increases in the production components is associated with decreases in protein concentration, and the increase in precocity leads to decreases in protein concentration and cooking time. The index based on the sum of ranks was the best alternative for simultaneous selection of traits in the cowpea segregating populations resulting from the crosses and backcrosses evaluated, with emphasis on the F4BC12, F4C21, and F4C12 populations, which had the highest genotypic gains.


Subject(s)
Edible Grain/genetics , Inbreeding , Models, Genetic , Plant Breeding/methods , Selective Breeding , Vigna/genetics , Edible Grain/growth & development , Edible Grain/standards , Genotype , Quantitative Trait, Heritable , Selection, Genetic , Vigna/growth & development
7.
Article in English | MEDLINE | ID: mdl-28702191

ABSTRACT

BACKGROUND: Genomic growth curves are generally defined only in terms of population mean; an alternative approach that has not yet been exploited in genomic analyses of growth curves is the Quantile Regression (QR). This methodology allows for the estimation of marker effects at different levels of the variable of interest. We aimed to propose and evaluate a regularized quantile regression for SNP marker effect estimation of pig growth curves, as well as to identify the chromosome regions of the most relevant markers and to estimate the genetic individual weight trajectory over time (genomic growth curve) under different quantiles (levels). RESULTS: The regularized quantile regression (RQR) enabled the discovery, at different levels of interest (quantiles), of the most relevant markers allowing for the identification of QTL regions. We found the same relevant markers simultaneously affecting different growth curve parameters (mature weight and maturity rate): two (ALGA0096701 and ALGA0029483) for RQR(0.2), one (ALGA0096701) for RQR(0.5), and one (ALGA0003761) for RQR(0.8). Three average genomic growth curves were obtained and the behavior was explained by the curve in quantile 0.2, which differed from the others. CONCLUSIONS: RQR allowed for the construction of genomic growth curves, which is the key to identifying and selecting the most desirable animals for breeding purposes. Furthermore, the proposed model enabled us to find, at different levels of interest (quantiles), the most relevant markers for each trait (growth curve parameter estimates) and their respective chromosomal positions (identification of new QTL regions for growth curves in pigs). These markers can be exploited under the context of marker assisted selection while aiming to change the shape of pig growth curves.

8.
Genet Mol Res ; 16(1)2017 Mar 22.
Article in English | MEDLINE | ID: mdl-28340274

ABSTRACT

Genomic selection (GS) is a variant of marker-assisted selection, in which genetic markers covering the whole genome predict individual genetic merits for breeding. GS increases the accuracy of breeding values (BV) prediction. Although a variety of statistical models have been proposed to estimate BV in GS, few methodologies have examined statistical challenges based on non-normal phenotypic distributions, e.g., skewed distributions. Traditional GS models estimate changes in the phenotype distribution mean, i.e., the function is defined for the expected value of trait-conditional on markers, E(Y|X). We proposed an approach based on regularized quantile regression (RQR) for GS to improve the estimation of marker effects and the consequent genomic estimated BV (GEBV). The RQR model is based on conditional quantiles, Qτ(Y|X), enabling models that fit all portions of a trait probability distribution. This allows RQR to choose one quantile function that "best" represents the relationship between the dependent and independent variables. Data were simulated for 1000 individuals. The genome included 1500 markers; most had a small effect and only a few markers with a sizable effect were simulated. We evaluated three scenarios according to symmetrical, positively, and negatively skewed distributions. Analyses were performed using Bayesian LASSO (BLASSO) and RQR considering three quantiles (0.25, 0.50, and 0.75). The use of RQR to estimate GEBV was efficient; the RQR method achieved better results than BLASSO, at least for one quantile model fit for all evaluated scenarios. The gains in relation to BLASSO were 86.28 and 55.70% for positively and negatively skewed distributions, respectively.


Subject(s)
Breeding/methods , Genomics/methods , Models, Genetic , Quantitative Trait Loci , Animals , Bayes Theorem , Genetic Markers/genetics , Genotype , Polymorphism, Single Nucleotide , Predictive Value of Tests , Regression Analysis , Selection, Genetic
9.
Genet Mol Res ; 15(4)2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27808373

ABSTRACT

The objective of this study was to examine the effects of the type and intensity of nutritional stress, and of the statistical treatment of the data, on the genotype x environment (G x E) interaction for tropical maize (Zea mays). For this purpose, 39 hybrid combinations were evaluated under low- and high-nitrogen and -phosphorus availability. The plants were harvested at the V6 stage, and the shoot dry mass was estimated. The variance components and genetic values were assessed using the restricted maximum likelihood/best linear unbiased prediction method, and subsequently analyzed using the GGE biplot method. We observed differences in the performances of the hybrids depending on both the type and intensity of nutritional stress. The results of relationship between environments depended on whether genotypic values or phenotypic means were used. The selection of tropical maize genotypes against nutritional stress should be performed for each nutrient availability level within each type of nutritional stress. The use of phenotypic means for this purpose provides greater reliability than do genotypic values for the analysis of the G x E interaction using GGE biplot.


Subject(s)
Environment , Models, Genetic , Tropical Climate , Zea mays/genetics , Genotype , Hybridization, Genetic/drug effects , Likelihood Functions , Nitrogen/pharmacology , Phenotype
10.
Genet Mol Res ; 15(4)2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27808382

ABSTRACT

Genomic selection is the main force driving applied breeding programs and accuracy is the main measure for evaluating its efficiency. The traditional estimator (TE) of experimental accuracy is not fully adequate. This study proposes and evaluates the performance and efficiency of two new accuracy estimators, called regularized estimator (RE) and hybrid estimator (HE), which were applied to a practical cassava breeding program and also to simulated data. The simulation study considered two individual narrow sense heritability levels and two genetic architectures for traits. TE, RE, and HE were compared under four validation procedures: without validation (WV), independent validation, ten-fold validation through jacknife allowing different markers, and with the same markers selected in each cycle. RE presented accuracies closer to the parametric ones and less biased and more precise ones than TE. HE proved to be very effective in the WV procedure. The estimators were applied to five traits evaluated in a cassava experiment, including 358 clones genotyped for 390 SNPs. Accuracies ranged from 0.67 to 1.12 with TE and from 0.22 to 0.51 with RE. These results indicated that TE overestimated the accuracy and led to one accuracy estimate (1.12) higher than one, which is outside of the parameter space. Use of RE turned the accuracy into the parameter space. Cassava breeding programs can be more realistically implemented using the new estimators proposed in this study, providing less risky practical inferences.


Subject(s)
Breeding , Genome, Plant , Genomics/methods , Manihot/genetics , Selection, Genetic , Inheritance Patterns/genetics , Quantitative Trait, Heritable
11.
Genet Mol Res ; 15(4)2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27813574

ABSTRACT

Age at the time of slaughter is a commonly used trait in animal breeding programs. Since studying this trait involves incomplete observations (censoring), analysis can be performed using survival models or modified linear models, for example, by sampling censored data from truncated normal distributions. For genomic selection, the greatest genetic gains can be achieved by including non-additive genetic effects like dominance. Thus, censored traits with effects on both survival models have not yet been studied under a genomic selection approach. We aimed to predict genomic values using the Cox model with dominance effects and compare these results with the linear model with and without censoring. Linear models were fitted via the maximum likelihood method. For censored data, sampling through the truncated normal distribution was used, and the model was called the truncated normal linear via Gibbs sampling (TNL). We used an F2 pig population; the response variable was time (days) from birth to slaughter. Data were previously adjusted for fixed effects of sex and contemporary group. The model predictive ability was calculated based on correlation of predicted genomic values with adjusted phenotypic values. The results showed that both with and without censoring, there was high agreement between Cox and linear models in selection of individuals and markers. Despite including the dominance effect, there was no increase in predictive ability. This study showed, for the first time, the possibility of performing genomic prediction of traits with censored records while using the Cox survival model with additive and dominance effects.


Subject(s)
Genomics/methods , Models, Genetic , Quantitative Trait, Heritable , Sus scrofa/genetics , Animals , Bayes Theorem , Breeding , Likelihood Functions , Proportional Hazards Models , Statistics, Nonparametric
12.
Genet Mol Res ; 15(4)2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27813580

ABSTRACT

Macaw palm (Acrocomia aculeata) is a promising species for use in biofuel production, and establishing breeding programs is important for the development of commercial plantations. The aim of the present study was to analyze genetic diversity, verify correlations between traits, estimate genetic parameters, and select different accessions of A. aculeata in the Macaw Palm Germplasm Bank located in Universidade Federal de Viçosa, to develop a breeding program for this species. Accessions were selected based on precocity (PREC), total spathe (TS), diameter at breast height (DBH), height of the first spathe (HFS), and canopy area (CA). The traits were evaluated in 52 accessions during the 2012/2013 season and analyzed by restricted estimation maximum likelihood/best linear unbiased predictor procedures. Genetic diversity resulted in the formation of four groups by Tocher's clustering method. The correlation analysis showed it was possible to have indirect and early selection for the traits PREC and DBH. Estimated genetic parameters strengthened the genetic variability verified by cluster analysis. Narrow-sense heritability was classified as moderate (PREC, TS, and CA) to high (HFS and DBH), resulting in strong genetic control of the traits and success in obtaining genetic gains by selection. Accuracy values were classified as moderate (PREC and CA) to high (TS, HFS, and DBH), reinforcing the success of the selection process. Selection of accessions for PREC, TS, and HFS by the rank-average method permits selection gains of over 100%, emphasizing the successful use of the accessions in breeding programs and obtaining superior genotypes for commercial plantations.


Subject(s)
Arecaceae/genetics , Arecaceae/physiology , Breeding , Ecotype , Genetic Variation , Cluster Analysis , Principal Component Analysis , Quantitative Trait, Heritable , Reproduction/genetics , Selection, Genetic
13.
Genet Mol Res ; 15(4)2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27813590

ABSTRACT

Genome wide selection (GWS) is essential for the genetic improvement of perennial species such as Citrus because of its ability to increase gain per unit time and to enable the efficient selection of characteristics with low heritability. This study assessed GWS efficiency in a population of Citrus and compared it with selection based on phenotypic data. A total of 180 individual trees from a cross between Pera sweet orange (Citrus sinensis Osbeck) and Murcott tangor (Citrus sinensis Osbeck x Citrus reticulata Blanco) were evaluated for 10 characteristics related to fruit quality. The hybrids were genotyped using 5287 DArT_seqTM (diversity arrays technology) molecular markers and their effects on phenotypes were predicted using the random regression - best linear unbiased predictor (rr-BLUP) method. The predictive ability, prediction bias, and accuracy of GWS were estimated to verify its effectiveness for phenotype prediction. The proportion of genetic variance explained by the markers was also computed. The heritability of the traits, as determined by markers, was 16-28%. The predictive ability of these markers ranged from 0.53 to 0.64, and the regression coefficients between predicted and observed phenotypes were close to unity. Over 35% of the genetic variance was accounted for by the markers. Accuracy estimates with GWS were lower than those obtained by phenotypic analysis; however, GWS was superior in terms of genetic gain per unit time. Thus, GWS may be useful for Citrus breeding as it can predict phenotypes early and accurately, and reduce the length of the selection cycle. This study demonstrates the feasibility of genomic selection in Citrus.


Subject(s)
Breeding , Citrus/genetics , Genome, Plant , Selection, Genetic , Genetic Markers , Genetic Variation , Inheritance Patterns/genetics , Phenotype , Quantitative Trait, Heritable
14.
J Anim Sci ; 94(5): 1865-74, 2016 May.
Article in English | MEDLINE | ID: mdl-27285684

ABSTRACT

We proposed multiple-trait random regression models (MTRRM) combining different functions to describe milk yield (MY) and fat (FP) and protein (PP) percentage in dairy goat genetic evaluation by using Bayesian inference. A total of 3,856 MY, FP, and PP test-day records, measured between 2000 and 2014, from 535 first lactations of Saanen and Alpine goats, including their cross, were used in this study. The initial analyses were performed using the following single-trait random regression models (STRRM): third- and fifth-order Legendre polynomials (Leg3 and Leg5), linear B-splines with 3 and 5 knots, the Ali and Schaeffer function (Ali), and Wilmink function. Heterogeneity of residual variances was modeled considering 3 classes. After the selection of the best STRRM to describe each trait on the basis of the deviance information criterion (DIC) and posterior model probabilities (PMP), the functions were combined to compose the MTRRM. All combined MTRRM presented lower DIC values and higher PMP, showing the superiority of these models when compared to other MTRRM based only on the same function assumed for all traits. Among the combined MTRRM, those considering Ali to describe MY and PP and Leg5 to describe FP (Ali_Leg5_Ali model) presented the best fit. From the Ali_Leg5_Ali model, heritability estimates over time for MY, FP. and PP ranged from 0.25 to 0.54, 0.27 to 0.48, and 0.35 to 0.51, respectively. Genetic correlation between MY and FP, MY and PP, and FP and PP ranged from -0.58 to 0.03, -0.46 to 0.12, and 0.37 to 0.64, respectively. We concluded that combining different functions under a MTRRM approach can be a plausible alternative for joint genetic evaluation of milk yield and milk constituents in goats.


Subject(s)
Goats/genetics , Lactation/genetics , Milk/chemistry , Animals , Bayes Theorem , Breeding , Female , Glycolipids/metabolism , Glycoproteins/metabolism , Goats/physiology , Lactation/physiology , Lipid Droplets , Milk Proteins/metabolism , Models, Genetic , Multivariate Analysis , Phenotype , Regression Analysis
15.
Genet Mol Res ; 15(2)2016 May 13.
Article in English | MEDLINE | ID: mdl-27323029

ABSTRACT

The aim of the present study was to propose and evaluate the use of factor analysis (FA) in obtaining latent variables (factors) that represent a set of pig traits simultaneously, for use in genome-wide selection (GWS) studies. We used crosses between outbred F2 populations of Brazilian Piau X commercial pigs. Data were obtained on 345 F2 pigs, genotyped for 237 SNPs, with 41 traits. FA allowed us to obtain four biologically interpretable factors: "weight", "fat", "loin", and "performance". These factors were used as dependent variables in multiple regression models of genomic selection (Bayes A, Bayes B, RR-BLUP, and Bayesian LASSO). The use of FA is presented as an interesting alternative to select individuals for multiple variables simultaneously in GWS studies; accuracy measurements of the factors were similar to those obtained when the original traits were considered individually. The similarities between the top 10% of individuals selected by the factor, and those selected by the individual traits, were also satisfactory. Moreover, the estimated markers effects for the traits were similar to those found for the relevant factor.


Subject(s)
Genome-Wide Association Study/veterinary , Genomics/methods , Swine/genetics , Animals , Bayes Theorem , Brazil , Factor Analysis, Statistical , Forecasting , Genome-Wide Association Study/methods , Genotype , Multivariate Analysis , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable
16.
Heredity (Edinb) ; 117(1): 33-41, 2016 07.
Article in English | MEDLINE | ID: mdl-27118156

ABSTRACT

Pedigrees and dense marker panels have been used to predict the genetic merit of individuals in plant and animal breeding, accounting primarily for the contribution of additive effects. However, nonadditive effects may also affect trait variation in many breeding systems, particularly when specific combining ability is explored. Here we used models with different priors, and including additive-only and additive plus dominance effects, to predict polygenic (height) and oligogenic (fusiform rust resistance) traits in a structured breeding population of loblolly pine (Pinus taeda L.). Models were largely similar in predictive ability, and the inclusion of dominance only improved modestly the predictions for tree height. Next, we simulated a genetically similar population to assess the ability of predicting polygenic and oligogenic traits controlled by different levels of dominance. The simulation showed an overall decrease in the accuracy of total genomic predictions as dominance increases, regardless of the method used for prediction. Thus, dominance effects may not be accounted for as effectively in prediction models compared with traits controlled by additive alleles only. When the ratio of dominance to total phenotypic variance reached 0.2, the additive-dominance prediction models were significantly better than the additive-only models. However, in the prediction of the subsequent progeny population, this accuracy increase was only observed for the oligogenic trait.


Subject(s)
Breeding , Genes, Dominant , Genetics, Population , Models, Genetic , Phenotype , Pinus/genetics , Algorithms , Computer Simulation , Inheritance Patterns , Models, Statistical , Quantitative Trait Loci , Quantitative Trait, Heritable , Reproducibility of Results
17.
Genet Mol Res ; 15(1): 15017071, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26985915

ABSTRACT

The breeding of sorghum, Sorghum bicolor (L.) Moench, aimed at improving its nutritional quality, is of great interest, since it can be used as a highly nutritive alternative food source and can possibly be cultivated in regions with low rainfall. The objective of the present study was to evaluate the potential and genetic diversity of grain-sorghum hybrids for traits of agronomic and nutritional interest. To this end, the traits grain yield and flowering, and concentrations of protein, potassium, calcium, magnesium, sulfur, iron, manganese, and zinc in the grain were evaluated in 25 grain-sorghum hybrids, comprising 18 experimental hybrids of Embrapa Milho e Sorgo and seven commercial hybrids. The genetic potential was analyzed by a multi-trait best linear unbiased prediction (BLUP) model, and cluster analysis was accomplished by squared Mahalanobis distance using the predicted genotypic values. Hybrids 0306037 and 0306034 stood out in the agronomic evaluation. The hybrids with agronomic prominence, however, did not stand out for the traits related to the nutritional quality of the grain. Three clusters were formed from the dendrogram obtained with the unweighted pair group method with arithmetic mean method. From the results of the genotypic BLUP and the analysis of the dendrogram, hybrids 0577337, 0441347, 0307651, and 0306037 were identified as having the potential to establish a population that can aggregate alleles for all the evaluated traits of interest.


Subject(s)
Quantitative Trait Loci , Sorghum/growth & development , Sorghum/genetics , Cluster Analysis , Edible Grain/genetics , Edible Grain/growth & development , Genetic Variation , Models, Genetic , Sorghum/classification
18.
Genet Mol Res ; 15(1)2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26909904

ABSTRACT

The objective of this study was to assess the efficiency of a modification of the simulated individual best linear unbiased prediction (BLUPIS) procedure, which is used for the approximation of classic individuals (BLUPI) for selection between and within sugarcane families. A total of 110 full-sib families were employed in an experiment initiated in 2007 using a randomized block design with five replicates. The variable tons of stalks per hectare was measured from a plot containing 20 plants. The modified BLUPIS (BLUPISM) procedure showed a 0.98 correlation with BLUPI, thus demonstrating great efficiency in selecting individuals in sugarcane families during the initial phase of genetic breeding programs.


Subject(s)
Breeding , Models, Genetic , Saccharum/genetics , Selection, Genetic
19.
Genet Mol Res ; 14(4): 12217-27, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26505370

ABSTRACT

A significant contribution of molecular genetics is the direct use of DNA information to identify genetically superior individuals. With this approach, genome-wide selection (GWS) can be used for this purpose. GWS consists of analyzing a large number of single nucleotide polymorphism markers widely distributed in the genome; however, because the number of markers is much larger than the number of genotyped individuals, and such markers are highly correlated, special statistical methods are widely required. Among these methods, independent component regression, principal component regression, partial least squares, and partial principal components stand out. Thus, the aim of this study was to propose an application of the methods of dimensionality reduction to GWS of carcass traits in an F2 (Piau x commercial line) pig population. The results show similarities between the principal and the independent component methods and provided the most accurate genomic breeding estimates for most carcass traits in pigs.


Subject(s)
Breeding , Genome/genetics , Swine/genetics , Animals , Principal Component Analysis , Quantitative Trait, Heritable , Sus scrofa/genetics
20.
Genet Mol Res ; 14(4): 12616-27, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26505412

ABSTRACT

The aim of this study was to compare genomic selection methodologies using a linear mixed model and the Cox survival model. We used data from an F2 population of pigs, in which the response variable was the time in days from birth to the culling of the animal and the covariates were 238 markers [237 single nucleotide polymorphism (SNP) plus the halothane gene]. The data were corrected for fixed effects, and the accuracy of the method was determined based on the correlation of the ranks of predicted genomic breeding values (GBVs) in both models with the corrected phenotypic values. The analysis was repeated with a subset of SNP markers with largest absolute effects. The results were in agreement with the GBV prediction and the estimation of marker effects for both models for uncensored data and for normality. However, when considering censored data, the Cox model with a normal random effect (S1) was more appropriate. Since there was no agreement between the linear mixed model and the imputed data (L2) for the prediction of genomic values and the estimation of marker effects, the model S1 was considered superior as it took into account the latent variable and the censored data. Marker selection increased correlations between the ranks of predicted GBVs by the linear and Cox frailty models and the corrected phenotypic values, and 120 markers were required to increase the predictive ability for the characteristic analyzed.


Subject(s)
Animal Husbandry/methods , Models, Genetic , Swine/genetics , Abattoirs , Age Factors , Animals , Bayes Theorem , Breeding , Computer Simulation , Female , Genetic Association Studies , Genomics/methods , Linear Models , Male , Polymorphism, Single Nucleotide , Proportional Hazards Models , Quantitative Trait, Heritable , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...