Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Methods ; 13(11): 945-952, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27694912

ABSTRACT

About one-third of the eukaryotic proteome undergoes ubiquitylation, but the enzymatic cascades leading to substrate modification are largely unknown. We present a genetic selection tool that utilizes Escherichia coli, which lack deubiquitylases, to identify interactions along ubiquitylation cascades. Coexpression of split antibiotic resistance protein tethered to ubiquitin and ubiquitylation target together with a functional ubiquitylation apparatus results in a covalent assembly of the resistance protein, giving rise to bacterial growth on selective media. We applied the selection system to uncover an E3 ligase from the pathogenic bacteria EHEC and to identify the epsin ENTH domain as an ultraweak ubiquitin-binding domain. The latter was complemented with a structure-function analysis of the ENTH-ubiquitin interface. We also constructed and screened a yeast fusion library, discovering Sem1 as a novel ubiquitylation substrate of Rsp5 E3 ligase. Collectively, our selection system provides a robust high-throughput approach for genetic studies of ubiquitylation cascades and for small-molecule modulator screening.


Subject(s)
Deubiquitinating Enzymes/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Selection, Genetic , Thiolester Hydrolases/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics , Drug Resistance, Bacterial/genetics , Escherichia coli/enzymology , Escherichia coli/metabolism , Models, Molecular , Plasmids , Signal Transduction/genetics , Ubiquitin/metabolism
2.
EMBO J ; 31(2): 378-90, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22081111

ABSTRACT

Covalent modification of proteins with ubiquitin (Ub) is widely implicated in the control of protein function and fate. Over 100 deubiquitylating enzymes rapidly reverse this modification, posing challenges to the biochemical and biophysical characterization of ubiquitylated proteins. We circumvented this limitation with a synthetic biology approach of reconstructing the entire eukaryotic Ub cascade in bacteria. Co-expression of affinity-tagged substrates and Ub with E1, E2 and E3 enzymes allows efficient purification of ubiquitylated proteins in milligram quantity. Contrary to in-vitro assays that lead to spurious modification of several lysine residues of Rpn10 (regulatory proteasomal non-ATPase subunit), the reconstituted system faithfully recapitulates its monoubiquitylation on lysine 84 that is observed in vivo. Mass spectrometry revealed the ubiquitylation sites on the Mind bomb E3 ligase and the Ub receptors Rpn10 and Vps9. Förster resonance energy transfer (FRET) analyses of ubiquitylated Vps9 purified from bacteria revealed that although ubiquitylation occurs on the Vps9-GEF domain, it does not affect the guanine nucleotide exchanging factor (GEF) activity in vitro. Finally, we demonstrated that ubiquitylated Vps9 assumes a closed structure, which blocks additional Ub binding. Characterization of several ubiquitylated proteins demonstrated the integrity, specificity and fidelity of the system, and revealed new biological findings.


Subject(s)
Escherichia coli/metabolism , Protein Processing, Post-Translational/physiology , Synthetic Biology/methods , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitin/metabolism , Ubiquitination/physiology , Adaptor Proteins, Vesicular Transport/metabolism , Affinity Labels , Cloning, Molecular/methods , Fluorescence Resonance Energy Transfer , Genetic Vectors/genetics , Guanine Nucleotide Exchange Factors , Guanosine Diphosphate/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Substrate Specificity , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligase Complexes/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Vesicular Transport Proteins , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...