Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 300: 115727, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36116611

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cousinia thomsonii is traditionally known for treating various diseases including joint pain, swelling, body ache, asthma, dermatitis, cough and arthritis. AIM OF THE STUDY: This study employs lipopolysaccharide induced inflammatory wistar-rat model to evaluate efficacy of Cousinia thomsonii active-extracts on the expression of crucial inflammatory markers viz. iNOS, PPAR-γ, Rel-A, COX-2 and serum analysis of CRP. MATERIALS AND METHODS: Methanol and aqueous extracts were administered orally at 25, 50, 100 mg/kg doses for 21 days. Serum was collected on 22nd day and rats were sacrificed to extract paw tissues. Dexamethasone (0.5 mg/kg) served as positive control. Immunoblotting and qPCR was used for expression analysis of iNOS, PPAR-γ, Rel-A, COX-2 respectively. ELISA was employed for evaluating CRP levels. Discovery-studio and Auto-Dock-Vina were used to check docking interactions of various identified compounds. RESULTS: Both extracts caused dose-dependent decline in iNOS, Rel-A, COX-2 and CRP levels, while there was a dose-dependent increase in PPAR-γ expression. Methanol extract dominated immunomodulatory potential as compared with the aqueous extract. The results of the GCMS revealed the presence of ten compounds. Some of these compounds include 1-Octacosanol, Ethyl Linoleate, 1-Heptacosanol, 1-Hexadecanol, 1-Dodecanol and Behenic alcohol having strong anti-inflammatory, antimicrobial, anti-acne and anti-viral activities. Molecular Docking scores were calculated between each target protein and selected compounds. The best affinity/interactions were observed between 1-Octacosanol towards iNOS, PPAR-γ, Rel-A, COX-2 and CRP with binding energy of -10.4, -11.1, -8.6, -9.9 and -7.9 (kcal/mol) respectively. These compounds may act as strong inhibitors for iNOS, Rel-A, COX-2 and CRP or as agonists for PPAR-γ; thereby inducing anti-inflammatory/immuno-modulatory activities. CONCLUSIONS: The results indicate that Cousinia thomsonii contains therapeutically active compounds and thus could serve as potential therapeutic regimen against diverse inflammatory diseases.


Subject(s)
Anti-Infective Agents , Asteraceae , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cyclooxygenase 2/metabolism , Dexamethasone , Dodecanol , Fatty Alcohols , Lipopolysaccharides , Methanol , Molecular Docking Simulation , Peroxisome Proliferator-Activated Receptors , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats
2.
J Inflamm Res ; 13: 829-845, 2020.
Article in English | MEDLINE | ID: mdl-33173324

ABSTRACT

INTRODUCTION: Chronic inflammation is implicated in a multitude of diseases, including arthritis, neurodegeneration, autoimmune myositis, type 2 diabetes, rheumatic disorders, spondylitis, and cancer. Therefore, strategies to explore potent anti-inflammatory regimens are pivotal from a human-health perspective. Medicinal plants represent a vast unexplored treasure trove of therapeutically active constituents with diverse pharmacological activities, including anti-inflammatory properties. Herein, we evaluated Cousinia thomsonii, an edible medicinal herb, for its anti-inflammatory/immunomodulatory properties. METHODS: Soxhlet extraction was used to obtain different solvent extracts (hexane, ethyl acetate, ethanol, methanol, and aqueous extract) in increasing order of polarity. In vitro anti-inflammatory assays were performed to investigate the effects of extracts on protein denaturation, proteinase activity, nitric oxide surge, and erythrocyte-membrane stabilization. The most effective extracts, ie, ethyl acetate (CTEA) and ethanol (CTE) extracts (150-200 g) were selected for further in vivo analysis using albino Wistar rats. Wistar rats received varying concentrations of CTEA and CTE (25, 50, and 100 mg/kg) for 3 weeks, followed by a single subplantar injection of lipopolysaccharide. Dexamethasone served as positive control. Blood was obtained from the retro-orbital plexus and serum separated for estimation of proinflammatory cytokines (IL6, IL1ß, IFNγ and TNFα). Western blotting was performed to study expression patterns of crucial proteins implicated in the NFκB pathway, ie, NFκB p65, NFκB1 p50, and NFκB2 p52. Histopathological examination was done and gas chromatography-mass spectrometry (GC-MS) carried out to reveal the identity of compounds responsible for ameliorating effects of C. thomsonii. RESULTS: Among five tested extracts, CTEA and CTE showed marked inhibition of protein denaturation, proteinase activity, nitric oxide surge and erythrocyte-membrane hemolysis at 600 µg/mL (P<0.001). Both these extracts showed no toxic effects up to a dose of 2,500 mg/kg. Extracts exhibited concentration-dependent reductions in expression of IL6, IL1ß, IFNγ, TNFα, NFκB-p65, NFκB1, and NFκB2 (P<0.05). Healing effects of extracts were evident from histopathological investigation. GC-MS analysis revealed the presence of important anti-inflammatory compounds, notably stigmast-5-en-3-ol, oleate, dotriacontane, ascorbic acid, n-hexadecanoic acid, and α-tocopherol, in C. thomsonii. CONCLUSION: C. thomsonii possesses significant anti-inflammatory/immunomodulatory potential by virtue of modifying levels of proinflammatory cytokines/markers and NFκB proteins.

3.
Cell Mol Neurobiol ; 40(3): 313-345, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31584139

ABSTRACT

Neurodegeneration entails progressive loss of neuronal structure as well as function leading to cognitive failure, apathy, anxiety, irregular body movements, mood swing and ageing. Proteomic dysregulation is considered the key factor for neurodegeneration. Mechanisms involving deregulated processing of proteins such as amyloid beta (Aß) oligomerization; tau hyperphosphorylation, prion misfolding; α-synuclein accumulation/lewy body formation, chaperone deregulation, acetylcholine depletion, adenosine 2A (A2A) receptor hyperactivation, secretase deregulation, leucine-rich repeat kinase 2 (LRRK2) mutation and mitochondrial proteinopathies have deeper implications in neurodegenerative disorders. Better understanding of such pathological mechanisms is pivotal for exploring crucial drug targets. Herein, we provide a comprehensive outlook about the diverse proteomic irregularities in Alzheimer's, Parkinson's and Creutzfeldt Jakob disease (CJD). We explicate the role of key neuroproteomic drug targets notably Aß, tau, alpha synuclein, prions, secretases, acetylcholinesterase (AchE), LRRK2, molecular chaperones, A2A receptors, muscarinic acetylcholine receptors (mAchR), N-methyl-D-aspartate receptor (NMDAR), glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) and mitochondrial/oxidative stress-related proteins for combating neurodegeneration and associated cognitive and motor impairment. Cross talk between amyloidopathy, synucleinopathy, tauopathy and several other proteinopathies pinpoints the need to develop safe therapeutics with ability to strike multiple targets in the aetiology of the neurodegenerative disorders. Therapeutics like microtubule stabilisers, chaperones, kinase inhibitors, anti-aggregation agents and antibodies could serve promising regimens for treating neurodegeneration. However, drugs should be target specific, safe and able to penetrate blood-brain barrier.


Subject(s)
Molecular Targeted Therapy , Nerve Degeneration/metabolism , Protein Aggregation, Pathological/metabolism , Proteome/analysis , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , Creutzfeldt-Jakob Syndrome/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Creutzfeldt-Jakob Syndrome/physiopathology , Humans , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/physiopathology , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/physiopathology , Protein Aggregation, Pathological/therapy , Proteome/metabolism , Proteomics , Signal Transduction/physiology
4.
Curr Cancer Drug Targets ; 19(6): 430-448, 2019.
Article in English | MEDLINE | ID: mdl-30073927

ABSTRACT

Protein-Protein Interactions (PPIs) drive major signalling cascades and play critical role in cell proliferation, apoptosis, angiogenesis and trafficking. Deregulated PPIs are implicated in multiple malignancies and represent the critical targets for treating cancer. Herein, we discuss the key protein-protein interacting domains implicated in cancer notably PDZ, SH2, SH3, LIM, PTB, SAM and PH. These domains are present in numerous enzymes/kinases, growth factors, transcription factors, adaptor proteins, receptors and scaffolding proteins and thus represent essential sites for targeting cancer. This review explores the candidature of various proteins involved in cellular trafficking (small GTPases, molecular motors, matrix-degrading enzymes, integrin), transcription (p53, cMyc), signalling (membrane receptor proteins), angiogenesis (VEGFs) and apoptosis (BCL-2family), which could possibly serve as targets for developing effective anti-cancer regimen. Interactions between Ras/Raf; X-linked inhibitor of apoptosis protein (XIAP)/second mitochondria-derived activator of caspases (Smac/DIABLO); Frizzled (FRZ)/Dishevelled (DVL) protein; beta-catenin/T Cell Factor (TCF) have also been studied as prospective anticancer targets. Efficacy of diverse molecules/ drugs targeting such PPIs although evaluated in various animal models/cell lines, there is an essential need for human-based clinical trials. Therapeutic strategies like the use of biologicals, high throughput screening (HTS) and fragment-based technology could play an imperative role in designing cancer therapeutics. Moreover, bioinformatic/computational strategies based on genome sequence, protein sequence/structure and domain data could serve as competent tools for predicting PPIs. Exploring hot spots in proteomic networks represents another approach for developing targetspecific therapeutics. Overall, this review lays emphasis on a productive amalgamation of proteomics, genomics, biochemistry, and molecular dynamics for successful treatment of cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Neoplasms/drug therapy , Protein Interaction Maps/drug effects , Proteome/antagonists & inhibitors , Proteome/metabolism , Animals , Antineoplastic Agents/pharmacology , Humans , Molecular Targeted Therapy/methods , Neoplasms/metabolism , Neoplasms/pathology , Signal Transduction
5.
Curr Top Med Chem ; 18(31): 2702-2719, 2018.
Article in English | MEDLINE | ID: mdl-30659543

ABSTRACT

Drug discovery is an exhaustive and time-consuming process involving numerous stages like target identification, validation, lead optimization, preclinical trials, clinical trials and finally postmarketing vigilance for drug safety. The application of computer-aided drug designing (CADD) is an indispensable approach for developing safe and effective drugs. Previous methods based on combinatorial chemistry (CC) and high throughput screening (HTS) consumed a lot of time as well as expenditure. CADD based approaches including pharmacophore modeling (PM), molecular docking (MD), inverse docking, chemical similarity (CS), quantitative structure-activity relationship (QSAR), virtual screening (VS) and molecular dynamics simulations have been quite productive in predicting the therapeutic outcome of candidate drugs/compounds besides saving precious time. CADD tools exploit structural and other information available regarding the target (enzyme/receptor) and the ligands to identify the compounds with the ability to treat diseases notably cancer, neurodegenerative disorders, malaria, Ebola, HIV-AIDS and many more. Computational approaches have led to the discovery of many drugs that have passed preclinical and clinical trials and become novel therapeutics in the treatment of a variety of diseases. Some notable examples of CADD derived novel drugs include dorzolamide, saquinavir, ritonavir, indinavir, captopril and tirofiban. CADD plays important role in predicting absorption, distribution, metabolism, excretion and toxicity (ADME/T) of candidate drugs. Overall, CADD represents an effective and much-needed strategy for designing therapeutically effective drugs to combat human diseases.


Subject(s)
Antihypertensive Agents/pharmacology , Computer-Aided Design , HIV Protease Inhibitors/pharmacology , HIV Protease/metabolism , Hypertension/drug therapy , Platelet Aggregation Inhibitors/pharmacology , Antihypertensive Agents/chemistry , Drug Design , Drug Evaluation, Preclinical , HIV Protease Inhibitors/chemistry , Humans , Molecular Docking Simulation , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/chemistry , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...