Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 198: 115912, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38113815

ABSTRACT

To evaluate the exposure risk and ingestion of microplastics by migratory shorebirds, which are regarded as apex predators in the coastal ecosystem, this study investigated the ubiquitous presence of microplastics in estuarine and coastal habitats and their potential to be transferred in the food chains. We analysed the presence of microplastics in water, sediment, major macroinvertebrate prey and the guano samples of ten shorebird species from ten important wintering grounds in the west coast of India. Our results revealed that water is the primary source through which microplastics disseminate into various ecosystem components. Microplastic debris in various forms were reported in all samples analysed, with microfibres being the most abundant form. While polyethylene and polypropylene were found as the major microplastic types in water, sediment, and prey samples, polystyrene was most abundant in guano samples. Microplastic transfer and impacts in this delicate ecosystem demand further investigations.


Subject(s)
Microplastics , Water Pollutants, Chemical , Ecosystem , Plastics/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Water/analysis , India
2.
Mar Pollut Bull ; 186: 114463, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36521360

ABSTRACT

The present study investigated the long-term fluctuation in the hydrological and substrate variables at different habitats of Kadalundi-Vallikkunnu Community Reserve (KVCR) over the last decade. We hypothesize that natural impact represented by climate change and long-term impact from anthropogenic activities including industrialization and intensified agricultural practices have a direct effect on the natural hydrological cycle and the quality of coastal shores and thus can be a reason for coastal habitat and wildlife degradation. Results indicate a significant degradation in nutrient and organic matter concentration in the sediment and dramatic increase in nutrient concentration, salinity, temperature, and pH in the water. Sediment and water degradation can be one of the important factors affecting the structural quality and biodiversity of the region. Therefore, having long-term monitoring data can be useful to plan and design management and conservation strategies to protect local biodiversity and ecosystem.


Subject(s)
Biodiversity , Ecosystem , Climate Change , Water , India , Conservation of Natural Resources
3.
Environ Monit Assess ; 194(4): 316, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35355144

ABSTRACT

Environmental pollution and climate change are causing major changes in the marine environment. Coastal zones around the world are experiencing changes such as nutrient influx, resulting in altered plankton communities. The aim of this study was to determine the response of zooplankton to the changes in the environmental variables in the coastal zone of the Arabian Sea, Southwest Coast of India, over 10 years. Zooplankton abundance, chlorophyll-a concentrations, and water quality variables (rainfall, nitrates, phosphates, pH, water temperature, and salinity) were quantified from January 2010 to December 2019. Water temperature, pH, salinity, and phosphates increased steadily across the sites during the study period whereas chlorophyll-a and nitrates decreased. Rainfall abundance was not exhibiting any patterns or trends. The effects of the sampled environmental variables on zooplankton abundance were tested using generalized linear mixed models. Salinity and phosphates negatively affected the zooplankton abundance whereas water temperature, pH, and chlorophyll-a concentration had a positive effect. Coastal zones in southwest India are experiencing declining phytoplankton abundance due to a number of environmental factors. Reduced phytoplankton combined with altered environmental variables are having declining effects on zooplankton. This decline in zooplankton population has far reaching effects on biota in higher trophic levels including economically important organisms such as fishes.


Subject(s)
Environmental Monitoring , Zooplankton , Animals , Chlorophyll A , Phytoplankton , Plankton
SELECTION OF CITATIONS
SEARCH DETAIL
...