Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Dalton Trans ; 53(22): 9257-9261, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38775103

ABSTRACT

This work presents a straightforward, room-temperature synthesis of a robust {[Fe(atrz)3](OTs)2}n monolith. This approach offers a green alternative to traditional nanoparticle synthesis for manipulating spin crossover (SCO) behaviour. The monolith exhibits a more gradual SCO transition at lower temperatures compared to the bulk material, aligning with observations in smaller particle systems. Notably, the synthesis employs a solvent- and surfactant-free approach, simplifying the process and potentially reducing environmental impact, aligning with the principles of green chemistry.

2.
Chem Soc Rev ; 52(2): 705-727, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36484276

ABSTRACT

Coordination complexes based on transition metal ions displaying [Ar]3d4-3d7 electronic configurations can undergo the likely most spectacular switchable phenomena found in molecular coordination chemistry, the well-known Spin Crossover (SCO). SCO phenomena is a detectable, reproducible and reversible switch that occurs between the high spin (HS) and low spin (LS) electronic states of the transition metal actuated by different stimuli (i.e. light, temperature, pressure, the presence of an analyte). Moreover, the occurrence of SCO phenomena causes different outputs, one of them being a colour change. Altogether, an analyte in gas form could be detected by naked eye once it has triggered the corresponding HS ↔ LS transition. This vapochromic effect could be used to detect volatile molecules using a low-cost technology, including harmful chemical substances, gases and/or volatile organic compounds (VOCs) that are present in our environment, in our home or at our workplace. The present review condenses all reported iron coordination compounds where the colour change induced by a given molecule in its gas form is coupled to a HS ↔ LS spin transition. Special emphasis has been made on describing the nature of the post-synthetic modification (PSM) taking place in the material upon the analyte uptake. In this case, three types of PSM can be distinguished: based on supramolecular contacts and/or leading to a coordinative or covalent bond. In the latter, a colour change not only indicates the switch of the spin state in the material but also the formation of a new compound with different properties. It is important to indicate that some of the SCO coordination compounds discussed in the current report have been part of other spin crossover reviews, that have gathered thermally induced SCO compounds and the influence of guest molecules on the SCO behaviour. However, in the majority of examples in these reviews, the change of colour upon the uptake of analytes is not associated with a spin transition at room temperature. In addition, the observed colour variations have been mainly discussed in terms of host-guest interactions, when they can also be induced by a PSM taking place in different sites of the molecule, like the Fe(II) coordination sphere or by chemically altering its inorganic and/or organic linkers. Therefore, we present here for the first time an exhaustive compilation of all systems in which the interaction between the coordination compounds and the vapour analytes leads to a colour change due to a spin transition in the metal centre at room temperature.

3.
Adv Sci (Weinh) ; 9(24): e2202253, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35712765

ABSTRACT

The increasing environmental protection demand has prompted the development of passive thermal regulation systems that reduce temperature fluctuations in buildings. Here, it is demonstrated that the heat generated by the sun can trigger a spin crossover (SCO) in a molecule-base material, resulting in a concomitant color variation (from pink to white) and a phase transition. This leads to a cooling effect with respect to other thermochromic materials. In addition, when the material is cooled, a dampening of the temperature decrease is produced. Therefore, these materials can potentially be implemented for passive temperature control in buildings. Furthermore, SCO materials are remarkably stable upon cycling and highly versatile, which allows for the design of compounds with properties tailored for the desired climatic conditions and comfortable temperature.

4.
Adv Sci (Weinh) ; 8(22): e2102619, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34658142

ABSTRACT

Nonporous coordination polymers (npCPs) able to accommodate molecules through internal lattice reorganization are uncommon materials with applications in sensing and selective gas adsorption. Proton conduction, extensively studied in the analogue metal-organic frameworks under high-humidity conditions, is however largely unexplored in spite of the opportunities provided by the particular sensitivity of npCPs to lattice perturbations. Here, AC admittance spectroscopy is used to unveil the mechanism behind charge transport in the nonporous 1·2CH3 CN. The conductance in the crystals is found to be of protonic origin. A vehicle mechanism is triggered by the dynamics of the weakly coupled acetonitrile molecules in the lattice that can be maintained by a combination of thermal cycles, even at low humidity levels. An analogue 1·pyrrole npCP is formed by in situ exchange of these weakly bound acetonitrile molecules by pyrrole. The color and conduction properties are determined by the molecules weakly bonded in the lattice. This is the first example of acetonitrile-mediated proton transport in an npCP showing distinct optical response to different molecules. These findings open the door to the design of switchable protonic conductors and capacitive sensors working at low humidity levels and with selectivity to different molecules.

5.
Antioxidants (Basel) ; 10(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430324

ABSTRACT

Pancreatic cancer is a usually fatal disease that needs innovative therapeutic approaches since the current treatments are poorly effective. In this study, based on cell lines, triazole-based coordination trimers made with soluble Fe(II) in an aqueous media were explored for the first time as adjuvant agents for the treatment of this condition. These coordination complexes were effective at relatively high concentrations and led to an increase in reactive oxygen species (ROS) in two pancreatic cancer cell lines, PANC-1 and BXPC-3, and this effect was accompanied by a significant reduction in cell viability in the presence of gemcitabine (GEM). Importantly, the tested compounds enhanced the effect of GEM, an approved drug for pancreatic cancer, through apoptosis induction and downregulation of the mTOR pathway. Although further evaluation in animal-based models of pancreatic cancer is needed, these results open novel avenues for exploring these iron-based materials in biomedicine in general and in pancreatic cancer treatment.

6.
Dalton Trans ; 49(22): 7315-7318, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32469360

ABSTRACT

A covalent post-synthetic modification is applied in one of the most relevant polymers to obtain unprecedented switchable spin crossover (SCO) materials. We also demonstrate that this material can be used as a selective chemo-sensor for VOCs (particularly, formaldehyde) thanks to solid/vapor reactions occurring between the polymer and the corresponding vapor.

7.
Chem Sci ; 10(27): 6612-6616, 2019 Jul 21.
Article in English | MEDLINE | ID: mdl-31367312

ABSTRACT

Efficient and low cost detection of harmful volatile organic compounds (VOCs) is a major health and environmental need in industrialized societies. For this, tailor-made porous coordination polymers are emerging as promising molecular sensing materials thanks to their responsivity to a wide variety of external stimuli and could be used to complement conventional sensors. Here, a non-porous crystalline 1D Fe(ii) coordination polymer acting as a porous acetonitrile host is presented. The desorption of interstitial acetonitrile is accompanied by magneto-structural transitions easily detectable in the optical and electronic properties of the material. This structural switch and therefore its (opto)electronic readout are reversible under exposure of the crystal to acetonitrile vapor. This simple and robust iron-based coordination polymer could be ideally suited for the construction of multifunctional sensor devices for volatile acetonitrile and potentially for other organic compounds.

SELECTION OF CITATIONS
SEARCH DETAIL