Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 13(45): 53829-53840, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34726907

ABSTRACT

The present environmental crisis prompts the search for renewable energy sources such as solar-driven production of hydrogen from water. Herein, we report an efficient hybrid photocatalyst for water oxidation, consisting of a ruthenium polypyridyl complex covalently grafted on core/shell Fe@FeOx nanoparticles via a phosphonic acid group. The photoelectrochemical measurements were performed under 1 sun illumination in 1 M KOH. The photocurrent density of this hybrid photoanode reached 20 µA/cm2 (applied potential of +1.0 V vs reversible hydrogen electrode), corresponding to a turnover frequency of 0.02 s-1. This performance represents a 9-fold enhancement of that achieved with a mixture of Fe@FeOx nanoparticles and a linker-free ruthenium polypyridyl photosensitizer. This increase in performance could be attributed to a more efficient electron transfer between the ruthenium photosensitizer and the Fe@FeOx catalyst as a consequence of the covalent link between these two species through the phosphonate pendant group.

2.
Nanoscale Adv ; 3(15): 4471-4481, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-36133455

ABSTRACT

To shed light on the factors governing the stability and surface properties of iron nanoparticles, a series of iron nanoparticles has been produced by hydrogenation of two different iron amido complexes: the bis[bis(trimethylsilyl)amido] Fe(ii), [Fe(N(SiMe3)2)2]2, and the bis(diphenylamido) Fe(ii), [Fe(NPh2)2]. Nanostructured materials of bcc structure, or nanoparticles displaying average sizes below 3 nm and a polytetrahedral structure, have been obtained. Depending on the synthesis conditions, the magnetization of the nanoparticles was either significantly lower than that of bulk iron, or much higher as for clusters elaborated under high vacuum conditions. Unexpectedly, hydrogenation of aromatic groups of the ligands of the [Fe(NPh2)2] precursor has been observed in some cases. Confrontation of the experimental results with DFT calculations made on polytetrahedral Fe91 model clusters bearing hydrides, amido and/or amine ligands at their surface, has shown that amido ligands can play a key role in the stabilisation of the nanoparticles in solution while the hydride surface coverage governs their surface magnetic properties. This study indicates that magnetic measurements give valuable indicators of the surface properties of iron nanoparticles in this size range, and beyond, of their potential reactivity.

3.
Molecules ; 24(24)2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31861222

ABSTRACT

The growing concern over the toxicity of Gd-based contrast agents used in magnetic resonance imaging (MRI) motivates the search for less toxic and more effective alternatives. Among these alternatives, iron-iron oxide (Fe@FeOx) core-shell architectures have been long recognized as promising MRI contrast agents while limited information on their engineering is available. Here we report the synthesis of 10 nm large Fe@FeOx nanoparticles, their coating with a 11 nm thick layer of dense silica and functionalization by 5 kDa PEG chains to improve their biocompatibility. The nanomaterials obtained have been characterized by a set of complementary techniques such as infra-red and nuclear magnetic resonance spectroscopies, transmission electron microscopy, dynamic light scattering and zetametry, and magnetometry. They display hydrodynamic diameters in the 100 nm range, zetapotential values around -30 mV, and magnetization values higher than the reference contrast agent RESOVIST®. They display no cytotoxicity against 1BR3G and HCT116 cell lines and no hemolytic activity against human red blood cells. Their nuclear magnetic relaxation dispersion (NMRD) profiles are typical for nanomaterials of this size and magnetization. They display high r2 relaxivity values and low r1 leading to enhanced r2/r1 ratios in comparison with RESOVIST®. All these data make them promising contrast agents to detect early stage tumors.


Subject(s)
Dextrans/chemistry , Ferric Compounds/chemistry , Iron/chemistry , Magnetic Resonance Imaging , Magnetite Nanoparticles/chemistry , Silicon Dioxide , Cell Line, Tumor , Coated Materials, Biocompatible , Humans , Magnetite Nanoparticles/ultrastructure , Models, Theoretical , Silicon Dioxide/chemistry , Spectroscopy, Fourier Transform Infrared
4.
Chempluschem ; 84(3): 302-306, 2019 03.
Article in English | MEDLINE | ID: mdl-31950761

ABSTRACT

A novel approach for the synthesis of Fe(0) nanoparticles (NPs) with tunable sizes and shapes is reported. Ultrasmall Fe(0) NPs were reacted under mild conditions in the presence of a mixture of palmitic acid and amine ligands. These NPs acted not only as preformed seeds but also as an internal iron(II) source that was produced by the partial dissolution of the NPs by the acid. This fairly simple approach allows the strict separation of the nucleation and the growth steps. By changing the acid concentration, a fine tuning of the relative ratio between the remaining Fe(0) seeds and the iron(II) reservoir was achieved, giving access to both size (from 7 to 20 nm) and shape (spheres, cubes or stars) control. The partial dissolution of the ultrasmall Fe(0) NPs into iron(II) source and the successive growth was further studied by using combined TEM and Mössbauer spectroscopy. The successive corrosion, coalescence, and ripening observed could be understood in the framework of an environment-dependent growth model.

5.
J Am Chem Soc ; 138(27): 8422-31, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27300493

ABSTRACT

The molecular and ensemble dynamics for the growth of hierarchical supercrystals of cobalt nanorods have been studied by in situ tandem X-ray absorption spectroscopy-small-angle X-ray scattering (XAS-SAXS). The supercrystals were obtained by reducing a Co(II) precursor under H2 in the presence of a long-chain amine and a long-chain carboxylic acid. Complementary time-dependent ex situ TEM studies were also performed. The experimental data provide critical insights into the nanorod growth mechanism and unequivocal evidence for a concerted growth-organization process. Nanorod formation involves cobalt nucleation, a fast atom-by-atom anisotropic growth, and a slower oriented attachment process that continues well after cobalt reduction is complete. Smectic-like ordering of the nanorods appears very early in the process, as soon as nanoparticle elongation appears, and nanorod growth takes place inside organized superlattices, which can be regarded as mesocrystals.

6.
Chemistry ; 21(48): 17437-44, 2015 Nov 23.
Article in English | MEDLINE | ID: mdl-26471723

ABSTRACT

The confinement of air-protected metallic magnetic nanoparticles in the inner cavity of carbon nanotubes (CNTs) should offer an interesting perspective for biomedical applications or for controlling CNT alignment in composites. Because the direct confinement of polymer-precoated nanoparticles in CNTs could be restricted by diffusion limitations, we developed a process based on: 1) the confinement of iron nanoparticles surface-modified with an iron polymerization catalyst in the cavity of CNTs and 2) the polymerization of isoprene on the confined nanoparticles. The resulting material consists in CNT-confined iron nanoparticles coated with a polyisoprene air barrier. This approach constitutes a proof of concept for the development of smart materials for use in medicine or composites.


Subject(s)
Butadienes/chemistry , Hemiterpenes/chemistry , Iron/chemistry , Metal Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Pentanes/chemistry , Catalysis , Magnetics , Polymerization
7.
ACS Nano ; 9(10): 9665-77, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26302309

ABSTRACT

Chemical methods offer the possibility to synthesize a large panel of nanostructures of various materials with promising properties. One of the main limitations to a mass market development of nanostructure based devices is the integration at a moderate cost of nano-objects into smart architectures. Here we develop a general approach by adapting the seed-mediated solution phase synthesis of nanocrystals in order to directly grow them on crystalline thin films. Using a Co precursor, single-crystalline Co nanowires are directly grown on metallic films and present different spatial orientations depending on the crystalline symmetry of the film used as a 2D seed for Co nucleation. Using films exposing 6-fold symmetry surfaces such as Pt(111), Au(111), and Co(0001), the Co heterogeneous nucleation and epitaxial growth leads to vertical nanowires self-organized in dense and large scale arrays. On the other hand, using films presenting 4-fold symmetry surfaces such as Pt(001) and Cu(001), the Co growth leads to slanted wires in discrete directions. The generality of the concept is demonstrated with the use of a Fe precursor which results in Fe nanostructures on metallic films with different growth orientations which depend on the 6-fold/4-fold symmetry of the film. This approach of solution epitaxial growth combines the advantages of chemistry in solution in producing shape-controlled and monodisperse metallic nanocrystals, and of seeded growth on an ad hoc metallic film that efficiently controls orientation through epitaxy. It opens attractive opportunities for the integration of nanocrystals in planar devices.

8.
Angew Chem Int Ed Engl ; 54(37): 10811-5, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26218322

ABSTRACT

Hybrid nanocomposites based on magnetic nanoparticles dispersed in liquid crystalline elastomers are fascinating emerging materials. Their expected strong magneto-elastic coupling may open new applications as actuators, magnetic switches, and for reversible storage of magnetic information. We report here the synthesis of a novel hybrid ferromagnetic liquid crystalline elastomer. In this material, highly anisotropic Co nanorods are aligned through a cross-linking process performed in the presence of an external magnetic field. We obtain a highly anisotropic magnetic material which exhibits remarkable magneto-elastic coupling. The nanorod alignment can be switched at will at room temperature by weak mechanical stress, leading to a change of more than 50 % of the remnant magnetization ratio and of the coercive field.

9.
Nano Lett ; 15(5): 3241-8, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25867032

ABSTRACT

Addition of Co2(Co)9 and Ru3(CO)12 on preformed monodisperse iron(0) nanoparticles (Fe(0) NPs) at 150 °C under H2 leads to monodisperse core-shell Fe@FeCo NPs and to a thin discontinuous Ru(0) layer supported on the initial Fe(0) NPs. The new complex NPs were studied by state-of-the-art transmission electron microscopy techniques as well as X-ray diffraction, Mössbauer spectroscopy, and magnetic measurements. These particles display large heating powers (SAR) when placed in an alternating magnetic field. The combination of magnetic and surface catalytic properties of these novel objects were used to demonstrate a new concept: the possibility of performing Fischer-Tropsch syntheses by heating the catalytic nanoparticles with an external alternating magnetic field.

10.
ACS Nano ; 9(3): 2792-804, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25734760

ABSTRACT

Cobalt nanorods possess ideal magnetic properties for applications requiring magnetically hard nanoparticles. However, their exploitation is undermined by their sensitivity toward oxygen and water, which deteriorates their magnetic properties. The development of a continuous metal shell inert to oxidation could render them stable, opening perspectives not only for already identified applications but also for uses in which contact with air and/or aqueous media is inevitable. However, the direct growth of a conformal noble metal shell on magnetic metals is a challenge. Here, we show that prior treatment of Co nanorods with a tin coordination compound is the crucial step that enables the subsequent growth of a continuous noble metal shell on their surface, rendering them air- and water-resistant, while conserving the monocrystallity, metallicity and the magnetic properties of the Co core. Thus, the as-synthesized core-shell ferromagnetic nanorods combine high magnetization and strong uniaxial magnetic anisotropy, even after exposure to air and water, and hold promise for successful implementation in in vitro biodiagnostics requiring probes of high magnetization and anisotropic shape.

11.
Nano Lett ; 14(6): 3481-6, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24828234

ABSTRACT

The implementation of nano-objects in numerous emerging applications often demands their integration in macroscopic devices. Here we present the bottom-up epitaxial solution growth of high-density arrays of vertical 5 nm diameter single-crystalline metallic cobalt nanowires on wafer-scale crystalline metal surfaces. The nanowires form regular hexagonal arrays on unpatterned metallic films. These hybrid heterostructures present an important perpendicular magnetic anisotropy and pave the way to a high density magnetic recording device, with capacities above 10 Terabits/in(2). This method bypasses the need of assembling and orientating free colloidal nanocrystals on surfaces. Its generalization to other materials opens new perspectives toward many applications.

12.
Nano Lett ; 14(5): 2747-54, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24742331

ABSTRACT

We report the solution phase synthesis, the structural analysis, and the magnetic properties of hybrid nanostructures combining two magnetic metals. These nano-objects are characterized by a remarkable shape, combining Fe nanocubes on Co nanorods. The topological composition, the orientation relationship, and the growth steps have been studied by advanced electron microscopy techniques, such as HRTEM, electron tomography, and state-of-the-art 3-dimensional elemental mapping by EDX tomography. The soft iron nanocubes behave as easy nucleation centers that induce the magnetization reversal of the entire nanohybrid, leading to a drastic modification of the overall effective magnetic anisotropy.

13.
J Phys Chem B ; 118(11): 3218-25, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24552446

ABSTRACT

This work deals with the structural analysis of side-chain liquid crystalline polysiloxanes, doped with magnetic cobalt nanorods, and their orientational properties under a magnetic field. These new materials exhibit the original combination of orientational behavior and ferromagnetic properties at room temperature. Here we show that, within the liquid crystal polymer matrix, the cobalt nanorods self-assemble in bundles made of nanorod rows packed in a 2-dimensional hexagonal lattice. This structure accounts for the magnetic properties of the composites. The magnetic and orientational properties are discussed with respect to the nature of the polymer matrix.

14.
Adv Mater ; 25(12): 1745-9, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23355030

ABSTRACT

The nanoscale manipulation and charge transport properties of the [Fe(Htrz)2(trz)](BF4) spin-crossover compound is demonstrated. Such 1D spin-crossover nanostructures are attractive building blocks for nanoelectronic switching and memory devices.

15.
J Mater Chem B ; 1(43): 5995-6004, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-32261067

ABSTRACT

In this work, a straightforward aqueous synthesis for mass production (up to 20 g) of uniform and crystalline magnetite nanoparticles with core sizes between 20 and 30 nm, which are the optimum nanoparticle core sizes for hyperthermia applications, is proposed. Magnetic and heating properties have been analyzed showing very high saturation magnetization and magnetic heating values. To stabilize the naked magnetite nanocrystals at physiological pH and increase their circulation time in blood, they have been covalently coated with carboxymethyl dextran, a biocompatible polymer. The influence of this superficial modification on the magnetic and heating properties has been studied showing that these biocompatible magnetic nanocrystals maintain high saturation magnetization values, good colloidal stability and hyperthermia properties in the presence of the polymeric external layer. These particles, suitably functionalized, could be used to selectively kill cancer cells under a moderate alternating magnetic field (44 mT and 70 kHz).

16.
J Am Chem Soc ; 134(43): 17922-31, 2012 Oct 31.
Article in English | MEDLINE | ID: mdl-23043267

ABSTRACT

The control of nanocrystal structures at will is still a challenge, despite the recent progress of colloidal synthetic procedures. It is common knowledge that even small modifications of the reaction parameters during synthesis can alter the characteristics of the resulting nano-objects. In this work we report an unexpected factor which determines the structure of cobalt nanoparticles. Nanocrystals of distinctly different sizes and shapes have resulted from stock solutions containing exactly the same concentrations of [Co{N(SiMe(3))(2)}(2)(thf)], hexadecylamine, and lauric acid. The reduction reaction itself has been performed under identical conditions. In an effort to explain these differences and to analyze the reaction components and any molecular intermediates, we have discovered that the rate at which the cobalt precursor is added to the ligand solution during the stock solution preparation at room temperature becomes determinant by triggering off a nonanticipated side reaction which consumes part of the lauric acid, the main stabilizing ligand, transforming it to a silyl ester. Thus, an innocent mixing, apparently not related to the main reaction which produces the nanoparticles, becomes the parameter which in fine defines nanocrystal characteristics. This side reaction affects in a similar way the morphology of iron nanoparticles prepared from an analogous iron precursor and the same long chain stabilizing ligands. Side reactions are potentially operational in a great number of systems yielding nanocrystals, despite the fact that they are very rarely mentioned in the literature.

17.
Nano Lett ; 12(9): 4722-8, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22845848

ABSTRACT

We report a tunable organometallic synthesis of monodisperse iron carbide and core/shell iron/iron carbide nanoparticles displaying a high magnetization and good air-stability. This process based on the decomposition of Fe(CO)(5) on Fe(0) seeds allows the control of the amount of carbon diffused and therefore the tuning of nanoparticles magnetic anisotropy. This results in unprecedented hyperthermia properties at moderate magnetic fields, in the range of medical treatments.


Subject(s)
Carbon Compounds, Inorganic/chemistry , Hyperthermia, Induced/methods , Iron Compounds/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/radiation effects , Carbon Compounds, Inorganic/radiation effects , Electric Impedance , Iron Compounds/radiation effects , Magnetic Fields , Materials Testing , Particle Size
18.
Nano Lett ; 11(12): 5128-34, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22098424

ABSTRACT

We report on room temperature magnetoresistance in networks of chemically synthesized metallic Fe nanoparticles surrounded by two types of organic barriers. Electrical properties, featuring Coulomb blockade, and magnetotransport measurements show that this magnetoresistance arises from spin-dependent tunnelling, so the organic ligands stabilizing the nanoparticles are efficient spin-conservative tunnel barrier. These results demonstrate the feasibility of an all-chemistry approach for room temperature spintronics.

19.
Beilstein J Nanotechnol ; 1: 108-18, 2010.
Article in English | MEDLINE | ID: mdl-21977400

ABSTRACT

The results of the investigation of the structural and magnetic (static and dynamic) properties of an assembly of metallic Fe nanoparticles synthesized by an organometallic chemical method are described. These nanoparticles are embedded in a polymer, monodisperse, with a diameter below 2 nm, which corresponds to a number of around 200 atoms. The X-ray absorption near-edge structure and Mössbauer spectrum are characteristic of metallic Fe. The structural studies by wide angle X-ray scattering indicate an original polytetrahedral atomic arrangement similar to that of ß-Mn, characterized by a short-range order. The average magnetic moment per Fe atom is raised to 2.59 µ(B) (for comparison, bulk value of metallic Fe: 2.2 µ(B)). Even if the spontaneous magnetization decreases rapidly as compared to bulk materials, it remains enhanced even up to room temperature. The gyromagnetic ratio measured by ferromagnetic resonance is of the same order as that of bulk Fe, which allows us to conclude that the orbital and spin contributions increase at the same rate. A large magnetic anisotropy for metallic Fe has been measured up to (3.7 ± 1.0)·10(5) J/m(3). Precise analysis of the low temperature Mössbauer spectra, show a broad distribution of large hyperfine fields. The largest hyperfine fields display the largest isomer shifts. This indicates a progressive increase of the magnetic moment inside the particle from the core to the outer shell. The components corresponding to the large hyperfine fields with large isomer shifts are indeed characteristic of surface atoms.

20.
J Am Chem Soc ; 131(2): 549-57, 2009 Jan 21.
Article in English | MEDLINE | ID: mdl-19140793

ABSTRACT

A tunable synthesis of iron nanoparticles (NPs) based on the decomposition of {Fe[N(SiMe(3))(2)](2)}(2) in the presence of organic superstructures composed of palmitic acid and hexadecylamine is reported. Control of the size (from 1.5 to 27 nm) and shape (spheres, cubes, or stars) of the NPs has been achieved. An environment-dependent growth model is proposed on the basis of results obtained for the NP morphology under various conditions and a complete Mossbauer study of the colloid composition at different reacting stages. It involves (i) an anisotropic growth process inside organic superstructures, leading to monocrystalline cubic NPs, and (ii) isotropic growth outside these superstructures, yielding polycrystalline spherical NPs.

SELECTION OF CITATIONS
SEARCH DETAIL