Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474259

ABSTRACT

Melanins are complex, polymeric pigments with interesting properties like UV-light absorbance ability, metal ion chelation capacity, antimicrobial action, redox behaviors, and scavenging properties. Based on these characteristics, melanins might be applied in different industrial fields like food packaging, environmental bioremediation, and bioelectronic fields. The actual melanin manufacturing process is not environmentally friendly as it is based on extraction and purification from cuttlefish. Synthetic melanin is available on the market, but it is more expensive than animal-sourced pigment and it requires long chemical procedures. The biotechnological production of microbial melanin, instead, might be a valid alternative. Streptomycetes synthesize melanins as pigments and as extracellular products. In this review, the melanin biotechnological production processes by different Streptomyces strains have been revised according to papers in the literature. The different fermentation strategies to increase melanin production such as the optimization of growth conditions and medium composition or the use of raw sources as growth substrates are here described. Diverse downstream purification processes are also reported as well as all the different analytical methods used to characterize the melanin produced by Streptomyces strains before its application in different fields.


Subject(s)
Actinomycetales , Streptomyces , Animals , Melanins , Chemical Phenomena , Biotechnology
2.
Microorganisms ; 12(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38399701

ABSTRACT

Melanins are pigments employed in food, cosmetic, and textile industries, manufactured by extraction from cuttlefishes. Their biotechnological production by Streptomycetes, instead, has been poorly investigated so far. In this paper, for the first time, the strain Streptomyces nashvillensis DSM 40314 was tested as an extracellular melanin producer by investigating the influence of diverse temperatures (26, 28, and 30 °C) and pH values (6.0 and 7.0) on bacterial growth, melanin production, and on the activity of the secreted tyrosinase, the first enzyme of the pigment biosynthetic pathway. In physiological 96-h shake flask experiments, the optimal growth parameters resulted to be 28 °C and pH 7.0, at which a maximum biomass of 8.4 ± 0.5 gcdw/L, a melanin concentration of 0.74 ± 0.01 g/L (yield on biomass of 0.09 ± 0.01 g/gcdw and productivity of 0.008 ± 0.001 g/L/h), and a final tyrosinase activity of 10.1 ± 0.1 U/mL were reached. The produced pigment was purified from the broth supernatant with a two-step purification process (75.0 ± 2.0% of purity with 65.0 ± 5.0% of recovery) and tested for its chemical, antioxidant, and photoprotective properties. Finally, characterization by UV-visible and FT-IR spectroscopy, elemental analyses, and mono- and bi-dimensional NMR suggested the eumelanin-like nature of the pigment.

3.
Int J Mol Sci ; 24(15)2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37569870

ABSTRACT

This paper sets up a new route for producing non-covalently crosslinked bio-composites by blending poly-γ-glutamic acid (γ-PGA) of microbial origin and chitosan (CH) through poly-electrolyte complexation under specific experimental conditions. CH and two different molecular weight γ-PGA fractions have been blended at different mass ratios (1/9, 2/8 and 3/7) under acidic pH. The developed materials seemed to behave like moldable hydrogels with a soft rubbery consistency. However, after dehydration, they became exceedingly hard, glass-like materials completely insoluble in water and organic solvents. The native biopolymers and their blends underwent comprehensive structural, physicochemical, and thermal analyses. The study confirmed strong physical interactions between polysaccharide and polyamide chains, facilitated by electrostatic attraction and hydrogen bonding. The materials exhibited both crystalline and amorphous structures and demonstrated good thermal stability and degradability. Described as thermoplastic and saloplastic, these bio-composites offer vast opportunities in the realm of polyelectrolyte complexes (PECs). This unique combination of properties allowed the bio-composites to function as glass-like materials, making them highly versatile for potential applications in various fields. They hold potential for use in regenerative medicine, biomedical devices, food packaging, and 3D printing. Their environmentally friendly properties make them attractive candidates for sustainable material development in various industries.


Subject(s)
Chitosan , Chitosan/chemistry , Biocompatible Materials/chemistry , Glutamic Acid , Regenerative Medicine , Polyelectrolytes , Polyglutamic Acid/chemistry
4.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108463

ABSTRACT

Posidonia oceanica (L.) Delile is the main seagrass plant in the Mediterranean basin that forms huge underwater meadows. Its leaves, when decomposed, are transported to the coasts, where they create huge banquettes that protect the beaches from sea erosion. Its roots and rhizome fragments, instead, aggregate into fibrous sea balls, called egagropili, that are shaped and accumulated by the waves along the shoreline. Their presence on the beach is generally disliked by tourists, and, thus, local communities commonly treat them as waste to remove and discard. Posidonia oceanica egagropili might represent a vegetable lignocellulose biomass to be valorized as a renewable substrate to produce added value molecules in biotechnological processes, as bio-absorbents in environmental decontamination, to prepare new bioplastics and biocomposites, or as insulating and reinforcement materials for construction and building. In this review, the structural characteristics, and the biological role of Posidonia oceanica egagropili are described, as well as their applications in different fields as reported in scientific papers published in recent years.


Subject(s)
Alismatales , Plant Roots , Rhizome , Alismatales/chemistry , Plant Leaves , Mediterranean Sea
5.
Appl Microbiol Biotechnol ; 106(21): 7265-7283, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36198867

ABSTRACT

Since the possibility to biotechnologically produce melanin by Streptomycetes using plant biomass has been so far poorly investigated, Posidonia oceanica egagropili, a marine waste accumulating along the Mediterranean Sea coasts, was explored as a renewable source to enhance extracellular melanin production by Streptomyces roseochromogenes ATCC 13400. Therefore, different amounts of egagropili powder were added to a culture medium containing glucose, malt extract, and yeast extract, and their effect on the melanin biosynthesis was evaluated. A 2.5 g·L-1 supplementation in 120-h shake flask growths at 26 °C, at pH 6.0 and 250 rpm, was found to enhance the melanin production up to 3.94 ± 0.12 g·L-1, a value 7.4-fold higher than the control. Moreover, 2-L batches allowed to reach a concentration of 9.20 ± 0.12 g·L-1 in 96 h with a productivity of 0.098 g·L-1·h-1. Further studies also demonstrated that the melanin production enhancement was due to the synergistic effect of both the lignin carbohydrate complex and the holocellulose components of the egagropili. Finally, the pigment was purified from the broth supernatant by acidic precipitation and reversed-phase chromatography, characterized by UV absorbance and one- and two-dimensional NMR, and also tested for its chemical, antioxidant, and photo-protective properties. KEY POINTS: • S. roseochromogenes ATCC 13400 produces extracellular soluble melanin. • Egagropili added to the growth medium enhances melanin production and productivity. • Both the lignin carbohydrate complex and the holocellulose egagropili components influence the melanin biosynthesis.


Subject(s)
Alismatales , Melanins , Antioxidants , Lignin , Powders , Alismatales/chemistry , Culture Media/chemistry , Carbohydrates , Glucose
6.
Carbohydr Polym ; 292: 119690, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35725214

ABSTRACT

Animal origin chondroitin sulfate is employed as anti-inflammatory drug and food supplement against anti-osteoarthritis, but also as antioxidant, antitumor, anticoagulant, and immune-regulatory agent or as biomaterial in tissue engineering scaffolds and in drug-delivery systems. As its biological properties depend on the structural characteristics, multi-analytical approaches are necessary to correlate specific features of its heterogenic composition to the different bioactivities. This is of paramount importance to assess the efficacy of pharmaceuticals and food supplements, beyond safety quality control. This review would address the issue of chondroitin sulfate characterization according to the Pharmacopeia testing monograph point of view giving an update of the analytical novelties reported in the last ten years that might be employed for the product testing and releasing on the market. Not-instrumental (e.g. colorimetric assays) and instrumental techniques, most of them coupling diverse chromatographic separation methods with spectroscopic and spectrometry detection techniques, mono and bi-dimensional NMR approaches, are compared as tools to evaluate identity, titer, purity grade, monosaccharide and disaccharide composition, averaged molecular weight and viscosity, charge and sulfate content, impurities and related substances including the presence of other glycosaminoglycans.


Subject(s)
Chondroitin Sulfates , Osteoarthritis , Animals , Anticoagulants , Chondroitin Sulfates/chemistry , Dietary Supplements/analysis , Glycosaminoglycans , Keratan Sulfate
7.
Polymers (Basel) ; 14(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35335520

ABSTRACT

Since the potentialities of applications of low molecular weight poly-γ-glutamic acid (γ-PGA) chains have been so far only partially explored, the separation of diverse molecular families of them, as well as their characterization for potential bioactivity and ability to form films, were investigated. Two different approaches based on organic solvent precipitation or on ultra- and nano-filtration membrane-based purification of inexpensive commercial material were employed to obtain size-specific γ-PGA fractions, further characterized by size exclusion chromatography equipped with a triple detector array and by ultra-high-performance liquid chromatography to assess their average molecular weight and their concentration. The γ-PGA low molecular weight fractions, purified by ultra-filtration, have been shown both to counteract the desiccation and the oxidative stress of keratinocyte monolayers. In addition, they were exploited to prepare novel hydrocolloid films by both solvent casting and thermal compression, in the presence of different concentrations of glycerol used as plasticizer. These biomaterials were characterized for their hydrophilicity, thermal and mechanical properties. The hot compression led to the attainment of less resistant but more extensible films. However, in all cases, an increase in elongation at break as a function of the glycerol content was observed. Besides, the thermal analyses of hot compressed materials demonstrated that thermal stability was increased with higher γ-PGA distribution po-lymer fractions. The obtained biomaterials might be potentially useful for applications in cosmetics and as vehicle of active molecules in the pharmaceutical field.

8.
Int J Mol Sci ; 22(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34502058

ABSTRACT

A lignin fraction (LF) was extracted from the sea balls of Posidonia oceanica (egagropili) and extensively dialyzed and characterized by FT-IR and NMR analyses. LF resulted water soluble and exhibited a brownish-to-black color with the highest absorbance in the range of 250-400 nm, attributed to the chromophore functional groups present in the phenylpropane-based polymer. LF high-performance size exclusion chromatography analysis showed a highly represented (98.77%) species of 34.75 kDa molecular weight with a polydispersity index of 1.10 and an intrinsic viscosity of 0.15. Quantitative analysis of carbohydrates indicated that they represented 28.3% of the dry weight of the untreated egagropili fibers and 72.5% of that of LF. In particular, eight different monosaccharides were detected (fucose, arabinose, rhamnose, galactose, glucose, xylose, glucosamine and glucuronic acid), glucuronic acid (46.6%) and rhamnose (29.6%) being the most present monosaccharides in the LF. Almost all the phenol content of LF (113.85 ± 5.87 mg gallic acid eq/g of extract) was water soluble, whereas around 22% of it consisted of flavonoids and only 10% of the flavonoids consisted of anthocyanins. Therefore, LF isolated from egagropili lignocellulosic material could be defined as a water-soluble lignin/carbohydrate complex (LCC) formed by a phenol polymeric chain covalently bound to hemicellulose fragments. LCC exhibited a remarkable antioxidant activity that remained quite stable during 6 months and could be easily incorporated into a protein-based film and released from the latter overtime. These findings suggest egagropili LCC as a suitable candidate as an antioxidant additive for the reinforcement of packaging of foods with high susceptibility to be deteriorated in aerobic conditions.


Subject(s)
Alismatales/chemistry , Antioxidants/chemistry , Lignin/chemistry , Monosaccharides/chemistry , Plant Extracts/chemistry , Gallic Acid/chemistry , Glucosamine/chemistry , Phenols/chemistry , Proteins/chemistry , Viscosity
9.
Pharmaceutics ; 13(5)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067775

ABSTRACT

The biological activity of chondroitin sulfate (CS) and glucosamine (GlcN) food supplements (FS), sold in USA against osteoarthritis, might depend on the effective CS and GlcN contents and on the CS structural characteristics. In this paper three USA FS were compared to two pharmaceutical products (Ph). Analyses performed by HPAE-PAD, by HPCE and by SEC-TDA revealed that the CS and GlcN titers were up to -68.8% lower than the contents declared on the labels and that CS of mixed animal origin and variable molecular weights was present together with undesired keratan sulfate. Simulated gastric and intestinal digestions were performed in vitro to evaluate the real CS amount that may reach the gut as biopolymer. Chondrocytes and synoviocytes primary cells derived from human pathological joints were used to assess: cell viability, modulation of the NF-κB, quantification of cartilage oligomeric matrix protein (COMP-2), hyaluronate synthase enzyme (HAS-1), pentraxin (PTX-3) and the secreted IL-6 and IL-8 to assess inflammation. Of the three FS tested only one (US FS1) enhanced chondrocytes viability, while all of them supported synoviocytes growth. Although US FS1 proved to be less effective than Ph as it reduced NF-kB, it could not down-regulate COMP-2; HAS-1 was up-regulated but with a lower efficacy. Inflammatory cytokines were markedly reduced by Ph while a slight decrease was only found for US-FS1.

10.
Appl Microbiol Biotechnol ; 105(2): 551-568, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33394149

ABSTRACT

Streptomyces is one of the most versatile genera for biotechnological applications, widely employed as platform in the production of drugs. Although streptomycetes have a complex life cycle and metabolism that would need multidisciplinary approaches, review papers have generally reported only studies on single aspects like the isolation of new strains and metabolites, morphology investigations, and genetic or metabolic studies. Besides, even if streptomycetes are extensively used in industry, very few review papers have focused their attention on the technical aspects of biotechnological processes of drug production and bioconversion and on the key parameters that have to be set up. This mini-review extensively illustrates the most innovative developments and progresses in biotechnological production and bioconversion processes of antibiotics, immunosuppressant, anticancer, steroidal drugs, and anthelmintic agents by streptomycetes, focusing on the process development aspects, describing the different approaches and technologies used in order to improve the production yields. The influence of nutrients and oxygen on streptomycetes metabolism, new fed-batch fermentation strategies, innovative precursor supplementation approaches, and specific bioreactor design as well as biotechnological strategies coupled with metabolic engineering and genetic tools for strain improvement is described. The use of whole, free, and immobilized cells on unusual supports was also reported for bioconversion processes of drugs. The most outstanding thirty investigations published in the last 8 years are here reported while future trends and perspectives of biotechnological research in the field have been illustrated. KEY POINTS: • Updated Streptomyces biotechnological processes for drug production are reported. • Innovative approaches for Streptomyces-based biotransformation of drugs are reviewed. • News about fermentation and genome systems to enhance secondary metabolite production.


Subject(s)
Actinomycetales , Pharmaceutical Preparations , Streptomyces , Biotechnology , Metabolic Engineering , Streptomyces/genetics
11.
Molecules ; 25(21)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114231

ABSTRACT

16α-Hydroxyprednisolone, an anti-inflammatory drug, could be potentially obtained from hydrocortisone bioconversion by combining a 1,2-dehydrogenation reaction performed by Arthrobacter simplexATCC31652 with a 16α-hydroxylation reaction by Streptomyces roseochromogenes ATCC13400. In this study we tested, for the first time, potential approaches to couple the two reactions using similar pH and temperature conditions for hydrocortisone bioconversion by the two strains. The A. simplex capability to 1,2-dehydrogenate the 16α-hydroxyhydrocortisone, the product of S. roseochromogenes transformation of hydrocortisone, and vice versa the capability of S. roseochromogenes to 16α-hydroxylate the prednisolone were assessed. Bioconversions were studied in shake flasks and strain morphology changes were observed by SEM. Whole cell experiments were set up to perform the two reactions in a sequential mode in alternate order or contemporarily at diverse temperature conditions. A. simplex catalyzed either the dehydrogenation of hydrocortisone into prednisolone efficiently or of 16α-hydroxyhydrocortisone into 16α-hydroxyprednisolone in 24 h (up to 93.9%). Surprisingly S. roseochromogenes partially converted prednisolone back to hydrocortisone. A 68.8% maximum of 16α-hydroxyprednisolone was obtained in 120-h bioconversion by coupling whole cells of the two strains at pH 6.0 and 26 °C. High bioconversion of hydrocortisone into 16α-hydroxyprednisolone was obtained for the first time by coupling A. simplex and S. roseochromogenes.


Subject(s)
Arthrobacter/metabolism , Biotechnology/methods , Hydrocortisone/metabolism , Prednisolone/metabolism , Biotransformation
12.
Electrophoresis ; 41(20): 1740-1748, 2020 10.
Article in English | MEDLINE | ID: mdl-32357264

ABSTRACT

Chondroitin sulfate is extracted from animal cartilaginous tissues and is commercialized as active principle against osteoarthritis. Its biological activity depends on its purity grade and could be altered by the presence of other glycosaminoglycans like keratan sulfate that could be contemporarily extracted from animal tissues or like hyaluronic acid that, instead, is added on purpose in food supplements. Although numerous methods are reported in literature for quality control analyses of chondroitin sulfate, few of them are able to detect other glycosaminoglycans. In this paper, for the first time, a new high-performance CE method was set up to quantify the chondroitin sulfate, the eventual keratan sulfate, and hyaluronic acid as intact chains: five chondroitin sulfate standards and 13 animal origin samples or food supplements from six different suppliers were analyzed. The new method was able to determine keratan sulfate similarly to a previously reported high-performance anion-exchange chromatography method, but in addition it showed the advantage to determine also the hyaluronic acid as never reported before.


Subject(s)
Chondroitin Sulfates/chemistry , Dietary Supplements/analysis , Electrophoresis, Capillary/methods , Hyaluronic Acid/analysis , Keratan Sulfate/analysis , Animals , Limit of Detection , Linear Models , Reproducibility of Results
13.
Adv Ther ; 36(11): 3221-3237, 2019 11.
Article in English | MEDLINE | ID: mdl-31494830

ABSTRACT

INTRODUCTION: Oral supplementation of chondroitin sulfate (CS) and glucosamine (GlcN), symptomatic slow-acting molecules, is recommended by European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis and Musculoskeletal Diseases (ESCEO) and other European Union (EU) guidelines for the restoration of the articular cartilage surface in patients affected by osteoarthritis (OA). They are commercialized as pharmaceutical grade products and as food supplements in combination with plant extracts hyaluronic acid, methylsulfonylmethane, and other components. Food supplements do not need to undergo the strict regulatory controls of pharmaceutical grade products; thus, composition and contaminants that could be present may not be evidenced before commercialization and these uncertainties may give rise to concerns about the bioactivity of these formulations. METHODS: In this paper 10 different food supplements (FS) from diverse European countries were analyzed in comparison with two pharmaceutical grade products (Ph) using updated analytical approaches and biochemical cell-based assays. The purity, the titer, and the origin of CS in Ph and FS samples were initially assessed in order to successively compare the biological function. Both food supplements and pharmaceutical formulations were tested in vitro, using the same final CS concentration, on primary chondrocytes and synoviocytes in terms of (i) cell viability, (ii) activation of the NF-κB-mediated inflammation pathway, (iii) cartilage oligomeric matrix protein (COMP-2), IL-6, and IL-8 production. RESULTS: All the FS presented a certain insoluble fraction; the CS and the GlcN contents were lower than the declared ones in 9/10 and 8/10 samples, respectively. All FS contained keratan sulfate (KS) at up to 50% of the total glycosaminoglycan amount declared on the label. Primary cells treated with the samples diluted to present the same CS concentration in the medium showed cytotoxicity in 7/10 FS while Ph preserved viability and reduced NF-κB, COMP-2, and secreted inflammatory cytokines. CONCLUSION: Among all samples tested, the pharmaceutical grade products demonstrated effective modulation of biomarkers counteracting the inflammation status and improving viability and the physiological condition of OA human primary chondrocyte and synoviocyte cells. In contrast to that, most FS were cytotoxic at the tested concentrations, and only 3/10 of them showed similarities to Ph sample behavior in vitro. FUNDING: This work was partially supported by PON01_1226 NUTRAFAST, MIUR Ministero dell'Università e della Ricerca Scientifica. Bioteknet financed two short-term grants for graduate technicians. The journal's Rapid Service and Open Access fees were funded by IBSA CH.


Subject(s)
Chondroitin Sulfates/pharmacokinetics , Chondroitin Sulfates/therapeutic use , Dietary Supplements , Glucosamine/pharmacokinetics , Glucosamine/therapeutic use , Osteoarthritis/drug therapy , Osteoporosis/drug therapy , Administration, Oral , Adult , Aged , Aged, 80 and over , Chondroitin Sulfates/administration & dosage , Europe , Female , Glucosamine/administration & dosage , Humans , Male , Middle Aged
14.
Carbohydr Polym ; 222: 114984, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31320062

ABSTRACT

Chondroitin sulfate and glucosamine, commercialized as anti-osteoarthritis food supplements, do not undergo the strict quality controls of pharmaceuticals. In this paper a systematic multi-analytical approach was designed to analyse 25 food supplements from 8 European countries compared to 2 pharmaceuticals by using high performance anion-exchange chromatography with pulsed amperometric detection, size exclusion chromatography with triple detector array, capillary electrophoresis, mono and bi-dimensional NMR. Furthermore the biological activity was assessed on in vitro human synoviocyte and chondrocyte primary cell models. Most of the samples (over 19 out of 25) showed lower condroitin sulfate and glucosamine contents than the declared ones (up to -60.3%) while all of them showed a KS contamination (up to 47.1%). Mixed animal origin chondroitin sulfate and multiple molecular weight species were determined in more than 32% of the samples. Only 1 on 5 biologically screened samples had an effective action in vitro almost comparable to the pharmaceuticals.


Subject(s)
Chondroitin Sulfates/analysis , Dietary Supplements/analysis , Glucosamine/analysis , Keratan Sulfate/chemistry , Osteoarthritis/drug therapy , Cells, Cultured , Chondrocytes/drug effects , Drug Contamination , Europe , Humans , Synoviocytes/drug effects
15.
Appl Microbiol Biotechnol ; 103(16): 6771-6782, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31222385

ABSTRACT

Heparin and chondroitin sulfate are used as anti-thrombic and anti-osteoarthritis drugs, respectively, but their pharmacological actions depend on their structural characteristics such as their sulfation grade and their molecular weight. In the last years, new fermentation-based biotechnological approaches have tried to obtain heparin and chondroitin sulfate starting from the heparosan and chondroitin-like capsular polysaccharides produced by Escherichia coli K5 and K4. The study of the microbial capsular polysaccharide molecular weight is critical to obtain nature-like or structural tailor cut glycosaminoglycan homologues. However, so far, it has been scarcely investigated. In this paper, for the first time, a new protocol was set up to determine the molecular weights of the capsular polysaccharides of three wild-type and three engineered E. coli K5 and K4 strains. The protocol includes a small-scale downstream train to purify the intact polysaccharides, directly from the fermentation broth supernatants, by using ultrafiltration membranes and anion exchange chromatography, and it couples size exclusion chromatography analyses with triple detector array. In the purification high recovery (> 85.0%) and the removal of the main contaminant, the lipopolysaccharide, were obtained. The averaged molecular weights of the wild-type capsular polysaccharides ranged from 51.3 to 90.9 kDa, while the engineered strains produced polysaccharides with higher molecular weights, ranging from 68.4 to 130.6 kDa, but with similar polydispersity values between 1.1 and 1.5.


Subject(s)
Chondroitin/chemistry , Disaccharides/chemistry , Escherichia coli/chemistry , Metabolic Engineering , Polysaccharides, Bacterial/chemistry , Chondroitin/metabolism , Chromatography, Gel , Culture Media/chemistry , Disaccharides/metabolism , Escherichia coli/genetics , Escherichia coli/growth & development , Molecular Weight , Polysaccharides, Bacterial/metabolism , Ultrafiltration
16.
BMC Biotechnol ; 18(1): 18, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29558934

ABSTRACT

BACKGROUND: Thermostable phosphotriesterase-like lactonases (PLLs) are able to degrade organophosphates and could be potentially employed as bioremediation tools and bioscavengers. But nowadays their manufacturing in high yields is still an issue that limits their industrial applications. In this work we aimed to set up a high yield production and purification biotechnological process of two recombinant PLLs expressed in E. coli, the wild type SacPox from Sulfolobus acidocaldarius and a triple mutated SsoPox C258L/I261F/W263A, originally from Sulfolobus solfataricus. To follow this aim new induction approaches were investigated to boost the enzyme production, high cell density fermentation strategies were set-up to reach higher and higher enzyme yields up to 22-L scale, a downstream train was studied to meet the requirements of an efficient industrial purification process. RESULTS: Physiological studies in shake flasks demonstrated that the use of galactose as inducer increased the enzyme concentrations up to 4.5 folds, compared to the production obtained by induction with IPTG. Optimising high cell density fed-batch strategies the production and the productivity of both enzymes were further enhanced of 26 folds, up to 2300 U·L- 1 and 47.1 U·L- 1·h- 1 for SacPox and to 8700 U·L- 1 and 180.6 U·L- 1·h- 1 for SsoPox C258L/I261F/W263A, and the fermentation processes resulted scalable from 2.5 to 22.0 L. After being produced and extracted from the cells, the enzymes were first purified by a thermo-precipitation step, whose conditions were optimised by response surface methodology. A following ultra-filtration process on 100 and 5 KDa cut-off membranes drove to a final pureness and a total recovery of both enzymes of 70.0 ± 2.0%, suitable for industrial applications. CONCLUSIONS: In this paper, for the first time, a high yield biotechnological manufacturing process of the recombinant enzymes SacPox and SsoPox C258L/I261F/W263A was set-up. The enzyme production was boosted by combining a new galactose induction approach with high cell density fed-batch fermentation strategies. An efficient enzyme purification protocol was designed coupling a thermo-precipitation step with a following membrane-based ultra-filtration process.


Subject(s)
Phosphoric Triester Hydrolases/metabolism , Recombinant Proteins/isolation & purification , Sulfolobus acidocaldarius/enzymology , Sulfolobus solfataricus/enzymology , Archaeal Proteins/genetics , Archaeal Proteins/isolation & purification , Archaeal Proteins/metabolism , Batch Cell Culture Techniques/instrumentation , Batch Cell Culture Techniques/methods , Biodegradation, Environmental , Chemical Precipitation , Chromatography, Gel/methods , Enzyme Stability , Escherichia coli/genetics , Fermentation , Phosphoric Triester Hydrolases/genetics , Phosphoric Triester Hydrolases/isolation & purification , Protein Engineering/methods , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sulfolobus acidocaldarius/genetics , Sulfolobus solfataricus/genetics , Ultrafiltration/methods
17.
Emerg Top Life Sci ; 2(3): 349-361, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-33525790

ABSTRACT

Several commercial uses and potential novel applications have recently been described for chondroitin sulfate (CS). However, the currently applied animal extractive procedure has a high environmental impact, which may become more profound especially in relation to the forecasted expansion of the CS market for applications as a food supplement, pharmaceutical ingredient, and biopolymer in materials for regenerative medicine. This issue, together with religious and consumer concerns, has prompted the good manufacturing practice (GMP) of chondroitin and CS. This is achievable by combining the design of metabolically engineered microorganisms and tailor-made fermentation processes with semi-synthetic or enzyme-based approaches. The final target is to obtain molecules with specific sulfation patterns that resemble those occurring in natural products and improve the sulfation motif or introduce specific substitutions, such as fucosylation, to tune the biological function. The frontier that is currently triggering attention is related to evaluating the bioactivity of unsulfated chondroitin. Due to recent advancements in the field, a brief survey of the most recent patent and research literature is discussed here.

18.
J Ind Microbiol Biotechnol ; 44(3): 363-375, 2017 03.
Article in English | MEDLINE | ID: mdl-28074318

ABSTRACT

Thermostable phosphotriesterase-like lactonases (PLLs) from extremophile archaea, like SsoPox from Sulfolobus solfataricus, are attractive biotechnological tools with industrial applications as organophosphate decontaminants, but their manufacturing still remains an unresolved issue because of the high costs and the low production yields. In this paper, for the first time, an efficient biotechnological process for the production and purification of a recombinant, engineered PLL, SsoPox W263F, expressed in E. coli, has been set up by studying new induction strategies, by designing high cell density cultivations and a new membrane-based downstream process. In fed batches, the enzyme production was boosted of 69-fold up to 4660.0 U L-1 using galactose as inducer in the replacement of IPTG; the process was scalable from 2.5 up to 150 L. By coupling a single thermo-precipitation step and an ultrafiltration process, a total enzyme recovery of 77% with a purity grade of almost 80% was reached.


Subject(s)
Carboxylic Ester Hydrolases/biosynthesis , Genes, Archaeal , Organophosphates/chemistry , Phosphoric Triester Hydrolases/biosynthesis , Sulfolobus solfataricus/genetics , Batch Cell Culture Techniques , Culture Media/chemistry , Decontamination , Escherichia coli/genetics , Escherichia coli/metabolism , Fermentation , Industrial Microbiology , Microorganisms, Genetically-Modified , Protein Engineering , Sulfolobus solfataricus/metabolism
19.
Biosci Rep ; 37(1)2017 02 28.
Article in English | MEDLINE | ID: mdl-28104792

ABSTRACT

Escherichia coli K4 and K5 capsular polysaccharides (K4 and K5 CPSs) have been used as starting material for the biotechnological production of chondroitin sulfate (CS) and heparin (HP) respectively. The CPS covers the outer cell wall but in late exponential or stationary growth phase it is released in the surrounding medium. The released CPS concentration was used, so far, as the only marker to connect the strain production ability to the different cultivation conditions employed. Determining also the intracellular UDP-sugar precursor concentration variations, during the bacterial growth, and correlating it with the total CPS production (as sum of the inner and the released ones), could help to better understand the chain biosynthetic mechanism and its bottlenecks. In the present study, for the first time, a new capillary electrophoresis method was set up to simultaneously analyse the UDP-glucose (UDP-Glc), UDP-galactose (UDP-Gal), UDP-N-acetylgalactosamine (UDP-GalNAc), UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-glucuronic acid (UDP-GlcA) and the inner CPS portion, extracted at the same time from the bacterial biomasses; separation was performed at 18°C and 18 kV with a borate-based buffer and detection at 200 nm. The E. coli K4 and K5 UDP-sugar pools were profiled, for the first time, at different time points of shake flask growths on a glycerol-containing medium and on the same medium supplemented with the monosaccharide precursors of the CPSs: their concentrations varied from 0.25 to 11 µM·gcdw-1, according to strain, the type of precursor, the growth phase and the cultivation conditions and their availability dramatically influenced the total CPS produced.


Subject(s)
Bacterial Capsules/metabolism , Chondroitin/metabolism , Disaccharides/metabolism , Escherichia coli/metabolism , Heparin/metabolism , Biosynthetic Pathways , Chondroitin Sulfates/metabolism , Escherichia coli/growth & development , Industrial Microbiology , Uridine Diphosphate/analogs & derivatives , Uridine Diphosphate/metabolism
20.
Anal Chim Acta ; 958: 59-70, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28110685

ABSTRACT

Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core.


Subject(s)
Chondroitin Sulfates/analysis , Drug Contamination , Keratan Sulfate/analysis , Animals , Proteoglycans
SELECTION OF CITATIONS
SEARCH DETAIL
...