Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38139365

ABSTRACT

Similarly to our healthy organs, the tumor tissue also constitutes an ecosystem. This implies that stromal cells acquire an altered phenotype in tandem with tumor cells, thereby promoting tumor survival. Cancer cells are fueled by abnormal blood vessels, allowing them to develop and proliferate. Tumor-associated fibroblasts adapt their cytokine and chemokine production to the needs of tumor cells and alter the peritumoral stroma by generating more collagen, thereby stiffening the matrix; these processes promote epithelial-mesenchymal transition and tumor cell invasion. Chronic inflammation and the mobilization of pro-tumorigenic inflammatory cells further facilitate tumor expansion. All of these events can impede the effective administration of tumor treatment; so, the successful inhibition of tumorous matrix remodeling could further enhance the success of antitumor therapy. Over the last decade, significant progress has been made with the introduction of novel immunotherapy that targets the inhibitory mechanisms of T cell activation. However, extensive research is also being conducted on the stromal components and other cell types of the tumor microenvironment (TME) that may serve as potential therapeutic targets.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Ecosystem , Neoplasms/metabolism , Carcinogenesis , Immunotherapy
2.
Int J Mol Sci ; 24(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37762298

ABSTRACT

Tumors are intricate ecosystems where cancer cells and non-malignant stromal cells, including cancer-associated fibroblasts (CAFs), engage in complex communication. In this study, we investigated the interaction between poorly (HLE) and well-differentiated (HuH7) hepatoma cells and LX2 fibroblasts. We explored various communication channels, including soluble factors, metabolites, extracellular vesicles (EVs), and miRNAs. Co-culture with HLE cells induced LX2 to produce higher levels of laminin ß1, type IV collagen, and CD44, with pronounced syndecan-1 shedding. Conversely, in HuH7/LX2 co-culture, fibronectin, thrombospondin-1, type IV collagen, and cell surface syndecan-1 were dominant matrix components. Integrins α6ß4 and α6ß1 were upregulated in HLE, while α5ß1 and αVß1 were increased in HuH7. HLE-stimulated LX2 produced excess MMP-2 and 9, whereas HuH7-stimulated LX2 produced excess MMP-1. LX2 activated MAPK and Wnt signaling in hepatoma cells, and conversely, hepatoma-derived EVs upregulated MAPK and Wnt in LX2 cells. LX2-derived EVs induced over tenfold upregulation of SPOCK1/testican-1 in hepatoma EV cargo. We also identified liver cancer-specific miRNAs in hepatoma EVs, with potential implications for early diagnosis. In summary, our study reveals tumor type-dependent communication between hepatoma cells and fibroblasts, shedding light on potential implications for tumor progression. However, the clinical relevance of liver cancer-specific miRNAs requires further investigation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Syndecan-1 , Collagen Type IV , Ecosystem , Liver Neoplasms/genetics , Fibroblasts , Communication , Proteoglycans
4.
Cancers (Basel) ; 15(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37046698

ABSTRACT

PURPOSE: Sparc/osteonectin, cwcv, and kazal-like domains proteoglycan 1 (SPOCK1) has been found in a variety of malignant tumors and is associated with a poor prognosis. We aimed to explore the role of SPOCK1 in ovarian cancer. METHODS: Ovarian cancer cell lines SKOV3 and SW626 were transfected with SPOCK1 overexpressing or empty vector using electroporation. Cells were studied by immunostaining and an automated Western blotting system. BrdU uptake and wound healing assays assessed cell proliferation and migration. SPOCK1 expression in human ovarian cancer tissues and in blood samples were studied by immunostaining and ELISA. Survival of patients with tumors exhibiting low and high SPOCK1 expression was analyzed using online tools. RESULTS: Both transfected cell lines synthesized different SPOCK1 variants; SKOV3 cells also secreted the proteoglycan. SPOCK1 overexpression stimulated DNA synthesis and cell migration involving p21CIP1. Ovarian cancer patients had increased SPOCK1 serum levels compared to healthy controls. Tumor cells of tissues also displayed abundant SPOCK1. Moreover, SPOCK1 levels were higher in untreated ovarian cancer serum and tissue samples and lower in recipients of chemotherapy. According to in silico analyses, high SPOCK1 expression was correlated with shorter survival. CONCLUSION: Our findings suggest SPOCK1 may be a viable anti-tumor therapeutic target and could be used for monitoring ovarian cancer.

5.
Geroscience ; 45(2): 1015-1031, 2023 04.
Article in English | MEDLINE | ID: mdl-36527584

ABSTRACT

The most severe alterations in Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) infection are seen in the lung. However, other organs also are affected. Here, we report histopathologic findings in the liver and detection of viral proteins and RNA in COVID-19 autopsies performed at the Semmelweis University (Budapest, Hungary). Between March 2020 through March 2022, 150 autopsies on patients who died of COVID-19 were analyzed. Cause-of-death categories were formed based on the association with SARS-CoV-2 as strong, contributive, or weak. Samples for histopathologic study were obtained from all organs, fixed in formalin, and embedded in paraffin (FFPE). Immunohistochemical study (IHC) to detect SARS-CoV-2 spike protein and nucleocapsid protein (NP), CD31, claudin-5, factor VIII, macrosialin (CD68), and cytokeratin 7, with reverse transcriptase polymerase chain reaction (RT-PCR), and in situ hybridization (ISH, RNAscope®) for SARS-CoV-2 RNA were conducted using FFPE samples of livers taken from 20 autopsies performed ≤ 2 days postmortem. All glass slides were scanned; the digital images were evaluated by semiquantitative scoring and scores were analyzed statistically. Steatosis, single-cell and focal/zonal hepatocyte necrosis, portal fibrosis, and chronic inflammation were found in varying percentages. Sinusoidal ectasia, endothelial cell disruption, and fibrin-filled sinusoids were seen in all cases; these were assessed semiquantitatively for severity (SEF scored). SEF scores did not correlate with cause-of-death categories (p = 0.92) or with severity of lung alterations (p = 0.96). SARS-CoV-2 RNA was detected in 13/20 cases by PCR and in 9/20 by ISH, with IHC demonstration of spike protein in 4/20 cases and NP in 15/20. Viral RNA and proteins were located in endothelial and Kupffer cells, and in portal macrophages, but not in hepatocytes and cholangiocytes. In conclusion, endothelial damage (SEF scores) was the most common alteration in the liver and was a characteristic, but not specific alteration in COVID-19, suggesting an important role in the pathogenesis of COVID-19-associated liver disease. Detection of SARS-CoV-2 RNA and viral proteins in liver non-parenchymal cells suggests that while the most extended primary viral cytotoxic effect occurs in the lung, viral components are present in other organs too, as in the liver. The necrosis/apoptosis and endothelial damage associated with viral infection in COVID-19 suggest that those patients who survive more severe COVID-19 may face prolonged liver repair and accordingly should be followed regularly in the post-COVID period.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , RNA, Viral/genetics , RNA, Viral/analysis , Autopsy , Spike Glycoprotein, Coronavirus , Liver , Necrosis
6.
Am J Physiol Cell Physiol ; 323(2): C289-C294, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35704700

ABSTRACT

Syndecan-1 (SDC-1) is a heparan sulfate (HS)/chondroitin sulfate proteoglycan (PG) of the cell surface and the extracellular matrix (ECM), which regulates a broad spectrum of physiological and pathological processes such as cell proliferation, migration, inflammation, matrix remodeling, wound healing, and tumorigenesis. Syndecan-1 represents the major PG of the liver, expressed by hepatocytes and cholangiocytes, and its elevated expression is a characteristic feature of liver diseases. The highest syndecan-1 expression is found in liver cirrhosis and in hepatocellular carcinoma (HCC) developed in cirrhotic livers. In addition, as being a hepatitis C receptor, hepatitis C virus (HCV)-infected livers produce extremely large amounts of syndecan-1. The serum levels of the cleaved (shedded) extracellular domain have clinical significance, as their increased concentration reflects on poor prognosis in cirrhosis as well as in cancer. In vivo experiments confirmed that syndecan-1 protects against early stages of fibrogenesis mainly by enhanced clearance of transforming growth factor ß1 (TGFß1) and thrombospondin-1 (THBS1) via circulation, and against hepatocarcinogenesis by interfering with several signaling pathways and enhancing cell cycle blockade. In addition, syndecan-1 is capable to hinder lipid metabolism and ribosomal biogenesis in induced cancer models. These observations together with its participation in the uptake of viruses (e.g., HCV and SARS-CoV-2) indicate that syndecan-1 is a central player in liver pathologies.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C , Liver Neoplasms , Liver , Syndecan-1 , Humans , Liver/physiopathology , Proteoglycans/metabolism , Syndecan-1/genetics , Syndecan-1/metabolism
7.
Am J Physiol Cell Physiol ; 322(4): C688-C693, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35235422

ABSTRACT

SPOCK1, 2, and 3 are considered matricellular proteoglycans without a structural role. Their functions are only partly elucidated. SPOCK1 was detected in the brain as a member of the neural synapses, then in the neuromuscular junctions. It plays a role in the regulation of the blood-brain barrier. Its best-characterized activity was its oncogenic potential discovered in 2012. Its deleterious effect on tumor progression was detected on 36 different types of tumors by the end of 2020. However, its mode of action is still not completely understood. Furthermore, even less was discovered about its physiological function. The fact that it was found to localize in the mitochondria and interfered with the lipid metabolism indicated that the full discovery of SPOCK1 is still waiting for us.


Subject(s)
Carcinogenesis , Proteoglycans , Cell Line, Tumor , Humans , Proteoglycans/genetics , Proteoglycans/metabolism
8.
Front Oncol ; 12: 819883, 2022.
Article in English | MEDLINE | ID: mdl-35186754

ABSTRACT

The extracellular matrix proteoglycan SPOCK1 is increasingly recognized as a contributor to the development and progression of cancers. Here, we study how SPOCK1, which is present in non-tumorous hepatocytes at low concentrations, promotes the development and progression of malignant hepatocellular tumors. Although SPOCK1 is an extracellular matrix proteoglycan, its concentration increases in the cytoplasm of hepatocytes starting with very low expression in the normal cells and then appearing in much higher quantities in cells of cirrhotic human liver and hepatocellular carcinoma. This observation is similar to that observed after diethylnitrosamine induction of mouse hepatocarcinogenesis. Furthermore, syndecan-1, the major proteoglycan of the liver, and SPOCK1 are in inverse correlation in the course of these events. In hepatoma cell lines, the cytoplasmic SPOCK1 colocalized with mitochondrial markers, such as MitoTracker and TOMM20, a characteristic protein of the outer membrane of the mitochondrion and could be detected in the cell nucleus. SPOCK1 downregulation of hepatoma cell lines by siRNA inhibited cell proliferation, upregulated p21 and p27, and interfered with pAkt and CDK4 expression. A tyrosine kinase array revealed that inhibition of SPOCK1 in the liver cancer cells altered MAPK signaling and downregulated several members of the Sarc family, all related to the aggressivity of the hepatoma cell lines. These studies support the idea that SPOCK1 enhancement in the liver is an active contributor to human and rodent hepatocarcinogenesis and cancer progression. However, its mitochondrial localization raises the possibility that it has a currently unidentified physiological function in normal hepatocytes.

9.
IUBMB Life ; 74(10): 927-942, 2022 10.
Article in English | MEDLINE | ID: mdl-35218610

ABSTRACT

Hyaluronan (HA) is a component of the extracellular matrix (ECM) it is the main non-sulfated glycosaminoglycan able to modulate cell behavior in the healthy and tumor context. Sulfated hyaluronan (sHA) is a biomaterial derived from chemical modifications of HA, since this molecule is not naturally sulfated. The HA sulfation modifies several properties of the native molecule, acquiring antitumor properties in different cancers. In this study, we evaluated the action of sHA of ~30-60 kDa with different degrees of sulfation (0.7 sHA1 and 2.5 sHA3) on tumor cells of a breast, lung, and colorectal cancer model and its action on other cells of the tumor microenvironment, such as endothelial and monocytes/macrophage cells. Our data showed that in breast and lung tumor cells, sHA3 is able to modulate cell viability, cytotoxicity, and proliferation, but no effects were observed on colorectal cancer cells. In 3D cultures of breast and lung cancer cells, sHA3 diminished the size of the tumorsphere and modulated total HA levels. In these tumor models, treatment of monocytes/macrophages with sHA3 showed a downregulation of the expression of angiogenic factors. We also observed a decrease in endothelial cell migration and modulation of the hyaluronan-binding protein TSG-6. In the breast in vivo xenograft model, monocytes/macrophages preincubated with sHA1 or sHA3 decreased tumor vasculature, TSG-6 and HA levels. Besides, in silico analysis showed an association of TSG-6, HAS2, and IL-8 with biological processes implicated in the progression of the tumor. Taken together, our data indicate that sHA in a breast and lung tumor context is able to induce an antiangiogenic action on tumor cells as well as in monocytes/macrophages (Mo/MØ) by modulation of endothelial migration, angiogenic factors, and vessel formation.


Subject(s)
Colorectal Neoplasms , Lung Neoplasms , Biocompatible Materials , Colorectal Neoplasms/drug therapy , Humans , Hyaluronan Receptors , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Interleukin-8 , Lung , Lung Neoplasms/drug therapy , Macrophages , Monocytes , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Sulfates/chemistry , Sulfates/pharmacology , Tumor Microenvironment
10.
Cancers (Basel) ; 13(7)2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33801718

ABSTRACT

Although syndecan-1 (SDC1) is known to be dysregulated in various cancer types, its implication in tumorigenesis is poorly understood. Its effect may be detrimental or protective depending on the type of cancer. Our previous data suggest that SDC1 is protective against hepatocarcinogenesis. To further verify this notion, human SDC1 transgenic (hSDC1+/+) mice were generated that expressed hSDC1 specifically in the liver under the control of the albumin promoter. Hepatocarcinogenesis was induced by a single dose of diethylnitrosamine (DEN) at an age of 15 days after birth, which resulted in tumors without cirrhosis in wild-type and hSDC1+/+ mice. At the experimental endpoint, livers were examined macroscopically and histologically, as well as by immunohistochemistry, Western blot, receptor tyrosine kinase array, phosphoprotein array, and proteomic analysis. Liver-specific overexpression of hSDC1 resulted in an approximately six month delay in tumor formation via the promotion of SDC1 shedding, downregulation of lipid metabolism, inhibition of the mTOR and the ß-catenin pathways, and activation of the Foxo1 and p53 transcription factors that lead to the upregulation of the cell cycle inhibitors p21 and p27. Furthermore, both of them are implicated in the regulation of intermediary metabolism. Proteomic analysis showed enhanced lipid metabolism, activation of motor proteins, and loss of mitochondrial electron transport proteins as promoters of cancer in wild-type tumors, inhibited in the hSDC1+/+ livers. These complex mechanisms mimic the characteristics of nonalcoholic steatohepatitis (NASH) induced human liver cancer successfully delayed by syndecan-1.

11.
Acta Oncol ; 60(4): 528-530, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33491510

ABSTRACT

BACKGROUND: The Bcl-2 inhibitor venetoclax has been recently introduced into the treatment of chronic lymphocytic leukemia. Venetoclax is a highly effective drug, however acquired resistance may make long-term treatment challenging. In our study, we present potential novel resistance mechanisms and prognostic markers that are potentially able to predict the early appearance of the resistance. MATERIAL AND METHODS: Repeated complete blood counts, flow cytometric measurements, and physical examinations were performed during the patient follow-up. Clinical and laboratory parameters showed that the patient developed clinical resistance to venetoclax on day 450 of therapy. Resistance mutation analysis (D103Y) and apoptosis arrays from samples at the time of resistance were done. RESULTS: We were able to identify the resistance mutations just a very low variant allele frequency level from the resistant samples. Furthermore we detected increased Bcl-2 expression in peripheral blood (PB), and XIAP overexpression in bone marrow (BM) that could lead to venetoclax resistance. We examined the immunophenotype of CLL cells and recognized that while the expression of CD86 did not change until day 270 of the treatment, since then its expression steadily increased. Moreover, we compared the expression of CD86 in the resistant PB and BM samples and did not find a notable difference between the compartments. CONCLUSION: Our results imply that CLL cells may try to avoid the apoptotic effect of venetoclax through increased CD86 expression by activating antiapoptotic mechanisms. Confirmatory experiments are still required to unequivocally prove that CD86 is a prognostic marker, however, its predictive property during the venetoclax treatment is promising.


Subject(s)
Antineoplastic Agents , Leukemia, Lymphocytic, Chronic, B-Cell , Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Drug Resistance, Neoplasm/genetics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Sulfonamides/therapeutic use
12.
Adv Exp Med Biol ; 1272: 17-38, 2020.
Article in English | MEDLINE | ID: mdl-32845500

ABSTRACT

The tumor microenvironment plays a determining role in cancer development through a plethora of interactions between the extracellular matrix and tumor cells. Decorin is a prototype member of the SLRP family found in a variety of tissues and is expressed in the stroma of various forms of cancer. Decorin has gained recognition for its essential roles in inflammation, fibrotic disorders, and cancer, and due to its antitumor properties, it has been proposed to act as a "guardian from the matrix." Initially identified as a natural inhibitor of transforming growth factor-ß, soluble decorin is emerging as a pan-RTK inhibitor targeting a multitude of RTKs, including EGFR, Met, IGF-IR, VEGFR2, and PDGFR. Besides initiating signaling, decorin/RTK interaction can induce caveosomal internalization and receptor degradation. Decorin also triggers cell cycle arrest and apoptosis and evokes antimetastatic and antiangiogenic processes. In addition, as a novel regulatory mechanism, decorin was shown to induce conserved catabolic processes, such as endothelial cell autophagy and tumor cell mitophagy. Therefore, decorin is a promising candidate for combatting cancer, especially the cancer types heavily dependent on RTK signaling.


Subject(s)
Decorin , Neoplasms/metabolism , Tumor Microenvironment , Autophagy , Decorin/metabolism , Humans , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction
13.
Biomolecules ; 10(8)2020 08 18.
Article in English | MEDLINE | ID: mdl-32824864

ABSTRACT

Decorin, the prototype member of the small leucine-rich proteoglycan gene family of extracellular matrix (ECM) proteins, acts as a powerful tumor suppressor by inducing the p21Waf1/Cip1 cyclin-dependent kinase inhibitor, as well as through its ability to directly bind and block the action of several tyrosine kinase receptors. Our previous studies suggested that the lack of decorin promotes hepatic carcinogenesis in mice. Based on this, we set out to investigate whether excess decorin may protect against the liver metastases of colon carcinoma. We also analyzed the effect of decorin in tissue microarrays of human colon carcinoma liver metastasis and examined whether the tumor cells can directly influence the decorin production of myofibroblasts. In humans, low levels of decorin in the liver facilitated the development of colon carcinoma metastases in proportion with more aggressive phenotypes, indicating a possible antitumor action of the proteoglycan. In vitro, colon carcinoma cells inhibited decorin expression in LX2 hepatic stellate cells. Moreover, liver-targeted decorin delivery in mice effectively attenuated metastasis formation of colon cancer. Overexpressed decorin reduced the activity of multiple receptor tyrosine kinases (RTKs) including the epidermal growth factor receptor (EGFR), an important player in colorectal cancer (CRC) pathogenesis. Downstream of that, we observed weakened signaling of ERK1/2, PLCγ, Akt/mTOR, STAT and c-Jun pathways, while p38 MAPK/MSK/CREB and AMPK were upregulated culminating in enhanced p53 function. In conclusion, decorin may effectively inhibit metastatic tumor formation in the liver.


Subject(s)
Colorectal Neoplasms/pathology , Decorin/genetics , Decorin/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Animals , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/therapy , Decorin/administration & dosage , Down-Regulation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , HT29 Cells , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Male , Mice , Neoplasm Transplantation , Signal Transduction , Tissue Array Analysis , Tumor Microenvironment
14.
PLoS One ; 15(6): e0234873, 2020.
Article in English | MEDLINE | ID: mdl-32559232

ABSTRACT

OBJECTIVE: Comparison of human mRNA microarray results from tumor-associated and normal cervical fibroblasts revealed significant TFPI2 downregulation in tumor-associated fibroblasts isolated from cervical cancer, indicating that TFPI2 downregulation may play an important role in the pathogenesis of the disease. In the present work, we investigated the mechanism of TFPI2 downregulation in tumor-associated fibroblasts and tumor cells. METHODS: In vitro models of monocultures and co-cultures were established with tumor cells and fibroblasts to explore the changes of TFPI-2 expression and epigenetic modifications of the TFPI2 gene. RESULTS: The TFPI2 gene was hypermethylated only in tumor cells. Reduction of TFPI-2 protein levels in tumor-associated fibroblasts, although the gene was not methylated, suggested alternative regulatory mechanisms of gene expression, such as inhibition by microRNAs. The expression pattern of miR-23a, a gene thought to inhibit TFPI2 translation, showed changes strongly correlated to detected TFPI-2 protein alterations. Transfections with miR-23a mimics resulted in a decrease of TFPI-2 protein expression whereas miR-23a inhibitors increased the TFPI-2 amount. Due to downregulation of miR-23a expression by HPV in cancer cells, TFPI2 was silenced by promoter methylation. In contrary, miR-23a was active in HPV-free fibroblasts and inactivated TFPI2. CONCLUSION: These results indicate dual epigenetic inhibition of TFPI2 on the transcription level by promoter methylation in cancer cells and on the translation level by miR-23a in tumor-associated fibroblasts. As a consequence, inactivation of the TFPI2 gene plays a strategic role in the progression of cervical cancer.


Subject(s)
Gene Silencing , Glycoproteins/genetics , Uterine Cervical Neoplasms/genetics , Adult , Cancer-Associated Fibroblasts/metabolism , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Glycoproteins/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , Tumor Cells, Cultured
15.
Front Oncol ; 10: 645, 2020.
Article in English | MEDLINE | ID: mdl-32477937

ABSTRACT

Hepatocellular carcinoma (HCC) represents one of the most frequent type of primary liver cancers. Decorin, a small leucine-rich proteoglycan of the extracellular matrix, represents a powerful tumor cell growth and migration inhibitor by hindering receptor tyrosine kinases and inducing p21WAF1/CIP1. In this study, first we tested decorin expression in HCCs utilizing in silico data, as well as formalin fixed paraffin embedded tissue samples of HCC in a tissue microarray (TMA). In silico data revealed that DCN/SMA mRNA ratio is decreased in HCC compared to normal tissues and follows the staging of the disease. Among TMA samples, 52% of HCCs were decorin negative, 33% exhibited low, and 15% high decorin levels corroborating in silico results. In addition, applying conditioned media of hepatoma cells inhibited decorin expression in LX2 stellate cells in vitro. These results raise the possibility that decorin acts as a tumor suppressor in liver cancer and that is why its expression decreased in HCCs. To further test the protective role of decorin, the proteoglycan was overexpressed in a mouse model of hepatocarcinogenesis evoked by thioacetamide (TA). After transfection, the excessive proteoglycan amount was mainly detected in hepatocytes around the central veins. Upon TA-induced hepatocarcinogenesis, the highest tumor count was observed in mice with no decorin production. Decorin gene delivery reduced tumor formation, in parallel with decreased pEGFR, increased pIGF1R levels, and with concomitant induction of pAkt (T308) and phopho-p53, suggesting a novel mechanism of action. Our results suggest the idea that decorin can be utilized as an anti-cancer agent.

16.
Pathol Oncol Res ; 26(2): 727-734, 2020 Apr.
Article in English | MEDLINE | ID: mdl-30734151

ABSTRACT

BPAP is a potent enhancer substance with catecholaminergic and serotoninergic activity in the brain. It was discovered that it is also effective against certain types of experimental cancers, showing the most promising results in case of lung cancer. That is why we tested its efficacy in two different doses in a newly developed EGFR wild type mouse lung adenocarcinoma xenograft model. Experiments were conducted on FVB/N and SCID mouse strains treated with low and high dose of BPAP. Body weight, survival, and tumor volumes were recorded. Furthermore, the activity of major signaling pathways of NSCLC such as MAPK and Akt/mTOR as well as cell cycle regulation were determined. Significant inhibition of tumor growth was exerted by both doses, but the mechanism of action was different. High dose directly inhibited, whereas low dose activated the main signaling pathways. Exposure to low dose BPAP resulted in elevated activity of the mTOR pathway together with p16INK-induced cell cycle arrest, a typical feature of geroconversion, a senescent state characterized by loss of cell proliferation. Finally the events culminated in cell cycle inhibition point in case of both doses mirrored by the decrease of cyclin D1, CDK4 and PCNA. In addition, BPAP treatment had a beneficial effect on bodyweight suggesting that the compound at least in part is able to compensate the cancer-related wasting. In view of the low toxicity and confirmed antitumor effect of BPAP against experimental lung adenocarcinoma, this novel compound deserves further attention.


Subject(s)
Adenocarcinoma of Lung/pathology , Benzofurans/pharmacology , Lung Neoplasms/pathology , Animals , Cell Cycle Checkpoints/drug effects , Humans , Mice , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
17.
Pathol Oncol Res ; 26(2): 813-819, 2020 Apr.
Article in English | MEDLINE | ID: mdl-30826971

ABSTRACT

Liver diseases such as liver cirrhosis, primary and metastatic liver cancers are still a major medical challenge. Syndecan-1 is one of the most important proteoglycans in the liver. Syndecan-1 is normally expressed on the surfaces of hepatocytes and cholangiocytes. Due to liver diseases the amount of syndecan-1 increases in the liver. Despite the emerging data of the biological function of syndecan-1, the clinical usefulness of this proteoglycan is still unknown. In our study we correlated syndecan-1 expression to clinico-pathological data. We found that syndecan-1 proved to be a good marker for hepatitis C virus based hepatocellular carcinoma and increased with liver dysfunction.


Subject(s)
Liver Diseases/metabolism , Liver Diseases/pathology , Syndecan-1/metabolism , Humans
18.
Cell Signal ; 62: 109354, 2019 10.
Article in English | MEDLINE | ID: mdl-31271881

ABSTRACT

BACKGROUND: In spite of therapeutic approaches, liver cancer is still one of the deadliest type of tumor in which tumor microenvironment may play an active role in the outcome of the disease. Decorin, a small leucine-rich proteoglycan is not only responsible for assembly and maintenance of the integrity of the extracellular matrix, but a natural inhibitor of cell surface receptors, thus it exerts antitumorigenic effects. Here we addressed the question whether this effect of decorin is independent of the tumor phenotypes including differentiation, proliferation and invasion. METHOD: Four hepatoma cell lines HepG2, Hep3B, HuH7 and HLE, possessing different molecular backgrounds, were selected to investigate. After proliferation tests, pRTK arrays, WB analyses, and immunofluorescent examinations were performed on decorin treated and control cells for comparison. RESULTS: Significant growth inhibitory potential of decorin on three out of four hepatoma cell lines was proven, however the mode of its action was different. Induction of p21WAF1/CIP1, increased inactivation of c-myc and ß-catenin, and decrease of EGFR, GSK3ß and ERK1/2 phosphorylation levels were observed in HepG2 cells, pathways already well-described in literature. However, in the p53 deficient Hep3B and HuH7, InsR and IGF-1R were the main receptors transmitting signals. In harmony with its receptor status, Hep3B cells displayed high level of activated AKT. As the cell line is retinoblastoma mutant, ATR/Chk1/Wee1 system might hinder the cell cycle in G2/M phase via phosphorylation of CDK1. In Huh7 cells, all RTKs were inhibited by decorin followed by downregulation of AKT. Furthermore, HuH7 cell line responded with concentration-dependent ERK activation and increased phospho-c-myc level. Decorin had only a non-significant effect on the proliferation rate of HLE cell line. However, it responded with a significant decrease of pAKT, c-myc and ß-catenin activity. In this special cell line, the inhibition of TGFß may be the first step of the protective effect of decorin. CONCLUSIONS: Based on our results decorin may be a candidate therapeutic agent in the battle against liver cancer, but several questions need to be answered. It is certain that decorin is capable to exert its suppressor effect in hepatoma cells without respect to their phenotype and molecular background.


Subject(s)
Carcinoma, Hepatocellular/genetics , Decorin/genetics , Liver Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , beta Catenin/genetics , Carcinoma, Hepatocellular/pathology , Cell Cycle/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Hep G2 Cells , Humans , Liver Neoplasms/pathology , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Proteins/genetics , Phosphorylation , Receptor, IGF Type 1/genetics , Transforming Growth Factor beta/genetics , Tumor Microenvironment/genetics
19.
Exp Biol Med (Maywood) ; 243(12): 1014-1023, 2018 08.
Article in English | MEDLINE | ID: mdl-30111166

ABSTRACT

MiR-206 is a remarkable miRNA because it functions as a suppressor miRNA in rhabdomyosarcoma while at the same time, as previously showed, it can act as an oncomiRNA in SMARCB1 immunonegative soft tissue sarcomas. The aim of this study was to investigate the effect of miR-206 on its several target genes in various human tumorous and normal cell lines. In the current work, we created miR-206-overexpressing cell lines (HT-1080, Caco2, iASC, and SS-iASC) using permanent transfection. mRNA expression of the target genes of miR-206 (SMARCB1, ACTL6A, CCND1, POLA1, NOTCH3, MET, and G6PD) and SMARCB1 protein expression were examined with quantitative real-time polymerase chain reaction, immunoblotting, immunocytochemistry, and flow cytometry. MiRNA inhibition was used to validate our results. We found a diverse silencing effect of miR-206 on its target genes. While an overall tendency of downregulation was noted, expression profiles of individual cell lines showed large variability. Only CCND1 and MET were consistently downregulated. MiR-206 had an antiproliferative effect on a normal human fibroblast cell line. A strong silencing effect of SMARCB1 in miR-206 transfected SS-iASC was most likely caused by the synergic influence of the SS18-SSX1 fusion protein and miR-206. In the same cell line, a moderate decrease of SMARCB1 protein expression could be observed with immunocytochemistry and flow cytometry. In the most comprehensive analysis of miR-206 effects so far, a modest but significant downregulation of miR-206 targets on the mRNA level was confirmed across all cell lines. However, the variability of the effect shows that the action of this miRNA is largely cell context-dependent. Our results also support the conception that the oncomiR effect of miR-206 on SMARCB1 plays an important but not exclusive role in SMARCB1 immunonegative soft tissue sarcomas so it can be considered important in planning the targeted therapy of these tumors in the future. Impact statement Mir-206 is a very unique microRNA because it can act as a suppressor miRNA or as an oncomiRNA depending on the tumor tissue. In SMARCB1 negative soft tissue sarcomas miR-206 is overexpressed, so thus in epithelioid and synovial sarcomas it functions as an oncomiRNA. MiR-206 has diverse silencing effects on its target genes. We found that the action of miR-206 is largely cell context dependent. The oncomiR role of miR-206 is crucial but not exclusive in SMARCB1 negative soft tissue sarcomas and miR-206 has an antiproliferative effect on a normal human fibroblast cell line. Expressions of miR-206 targets observed in tumors can only be reproduced in the corresponding tumorous cell lines. This is the first study which examined the permanent effect of miR-206 on its target genes in normal, tumor, and genetically engineered cell lines.


Subject(s)
MicroRNAs/genetics , MicroRNAs/metabolism , Rhabdomyosarcoma/genetics , Transfection , Caco-2 Cells , Cell Line, Tumor , Down-Regulation , Epigenesis, Genetic , Fibroblasts/metabolism , Gene Expression Profiling , Gene Silencing , Humans , Immunohistochemistry , Rhabdomyosarcoma/drug therapy , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Sarcoma/drug therapy , Sarcoma/genetics , Signal Transduction
20.
Matrix Biol ; 68-69: 474-489, 2018 08.
Article in English | MEDLINE | ID: mdl-29454902

ABSTRACT

Increased expression of syndecan-1 is a characteristic feature of human liver cirrhosis. However, no data are available on the significance of this alteration. To address this question we designed a transgenic mouse strain that driven by albumin promoter, expresses human syndecan-1 in the hepatocytes. Liver cirrhosis was induced by thioacetamide in wild type and hSDC1+/+ mice of the identical strain. The process of fibrogenesis, changes in signal transduction and proteoglycan expression were followed. In an in vitro experiment, the effect of syndecan-1 overexpression on the action of TGFß1 was determined. Human syndecan-1 and TGFß1 levels were measured by ELISA in the circulation. Without challenge, no morphological differences were observed between wild type and transgenic mice livers, although significant upregulation of phospho-Akt and FAK was observed in the latter. Fibrogenesis in the transgenic livers, characterized by picrosirius staining, collagen type I, and SMA levels, lagged behind that of control in the first and second months. Changes in signal transduction involved in the process of fibrogenesis, as SMAD, MAPK, Akt and GSK, pointed to the decreased effect of TGFß1, and this was corroborated by the decreased mRNA expression of TIEG and the growth factor itself. In vitro experiments exposing the LX2 hepatic stellate cell line to conditioned media of wild type and syndecan-1 transfected Hep3B cell lines proved that medium with high syndecan-1 content inhibits TGFß1-induced upregulation of SMA, TIEG, collagen type I and thrombospondin-1 expression. Detection of liver proteoglycans and heparan sulfate level revealed that their amounts are much higher in control transgenic liver, than that in the wild type. However, it decreases dramatically as a result of shedding after hepatic injury. Shedding is likely promoted by the upregulation of MMP14. As syndecan-1 can bind thrombospondin-1, and as our result demonstrated that the same is true for TGFß1, shed syndecan-1 can remove the growth factor and its activator together into the systemic circulation.Taking together, our results indicate that the effect of syndecan-1 is accomplished on two levels: a, the shedded syndecan can bind, inhibit and remove TGFß1; b, interferes with the activation of TGFß1 by downregulation and binding thrombospondin-1, the activator of the growth factor. However, by the end of the fourth month the protective effect was lost, which is explained by the considerable decrease of syndecan-1 and the almost complete loss of heparan sulfate from the surface of hepatocytes.


Subject(s)
Liver Cirrhosis, Experimental/metabolism , Matrix Metalloproteinase 14/metabolism , Syndecan-1/genetics , Syndecan-1/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Cell Line , Early Growth Response Transcription Factors/genetics , Humans , Kruppel-Like Transcription Factors/genetics , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/genetics , Mice , Mice, Transgenic , Phosphorylation , Thioacetamide/adverse effects , Thrombospondin 1/metabolism , Transcriptional Activation , Transforming Growth Factor beta1/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...