Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(12): e0294338, 2023.
Article in English | MEDLINE | ID: mdl-38100474

ABSTRACT

Island environments have the potential to change evolutionary trajectories of morphological traits in species relative to their mainland counterparts due to habitat and resource differences, or by reductions in the intensity of social or sexual selection. Latitude, island size, and isolation may further influence trait evolution through biases in colonization rates. We used a global dataset of passerine plumage color as a model group to identify selective pressures driving morphological evolution of island animals using phylogenetically-controlled analyses. We calculated chromaticity values from red and blue scores extracted from images of the majority of Passeriformes and tested these against the factors hypothesized to influence color evolution. In contrast to predictions based on sexual and social selection theory, we found consistent changes in island female color (lower red and higher blue chromaticity), but no change in males. Instead, island size and distance from mainland and other islands influenced color in both sexes, reinforcing the importance of island physiognomy in shaping evolutionary processes. Interactions between ecological factors and latitude also consistently influenced color for both sexes, supporting a latitudinal gradient hypothesis. Finally, patterns of color evolution varied among families, indicating taxon-specific microevolutionary processes in driving color evolution. Our results show island residency influences color evolution differently between sexes, but the patterns in both sexes are tempered by ecological, island characteristics, and phylogenetic effects that further vary in their importance among families. The key role of environmental factors in shaping bird plumage on islands further suggests a reduced importance of sexual and social factors in driving color evolution.


Subject(s)
Biological Evolution , Passeriformes , Humans , Male , Animals , Female , Phylogeny , Ecosystem , Passeriformes/genetics , Passeriformes/anatomy & histology , Phenotype , Color
2.
PLoS One ; 17(8): e0273347, 2022.
Article in English | MEDLINE | ID: mdl-35994495

ABSTRACT

The elaborate ornamental plumage displayed by birds has largely been attributed to sexual selection, whereby the greater success of ornamented males in attaining mates drives a rapid elaboration of those ornaments. Indeed, plumage elaboration tends to be greatest in species with a high variance in reproductive success such as polygynous mating systems. Even among socially monogamous species, many males are extremely colourful. In their now-classic study, Møller and Birkhead (1994) suggested that increased variance in reproductive success afforded by extra-pair paternity should intensify sexual selection pressure and thus an elaboration of male plumage and sexual dichromatism, but the relatively few measures of extra-pair paternity at the time prevented a rigorous test of this hypothesis. In the nearly three decades since that paper's publication, hundreds of studies have been published on rates of extra-pair paternity and more objective measures of plumage colouration have been developed, allowing for a large-scale comparative test of Møller and Birkhead's (1994) hypothesis. Using an analysis of 186 socially monogamous passerine species with estimates of extra-pair paternity, our phylogenetically controlled analysis confirms Møller and Birkhead's (1994) early work, demonstrating that rates of extra-pair paternity are positively associated with male, but not female, colouration and with the extent of sexual dichromatism. Plumage evolution is complex and multifaceted, driven by phylogenetic, ecological, and social factors, but our analysis confirms a key role of extra-pair mate choice in driving the evolution of ornamental traits.


Subject(s)
Passeriformes , Paternity , Animals , Color , Male , Passeriformes/genetics , Phylogeny , Reproduction , Sexual Behavior, Animal
3.
Ecol Evol ; 11(19): 13247-13258, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34646466

ABSTRACT

Molt is critical for birds as it replaces damaged feathers and worn plumage, enhancing flight performance, thermoregulation, and communication. In passerines, molt generally occurs on the breeding grounds during the postbreeding period once a year. However, some species of migrant passerines that breed in the Nearctic and Western Palearctic regions have evolved different molting strategies that involve molting on the overwintering grounds. Some species forego molt on the breeding grounds and instead complete their prebasic molt on the overwintering grounds. Other species molt some or all feathers a second time (prealternate molt) during the overwintering period. Using phylogenetic analyses, we explored the potential drivers of the evolution of winter molts in Nearctic and Western Palearctic breeding passerines. Our results indicate an association between longer photoperiods and the presence of prebasic and prealternate molts on the overwintering grounds for both Nearctic and Western Palearctic species. We also found a relationship between prealternate molt and generalist and water habitats for Western Palearctic species. Finally, the complete prealternate molt in Western Palearctic passerines was linked to longer days on the overwintering grounds and longer migration distance. Longer days may favor the evolution of winter prebasic molt by increasing the time window when birds can absorb essential nutrients for molt. Alternatively, for birds undertaking a prealternate molt at the end of the overwintering period, longer days may increase exposure to feather-degrading ultra-violet radiation, necessitating the replacement of feathers. Our study underlines the importance of the overwintering grounds in the critical process of molt for many passerines that breed in the Nearctic and Western Palearctic regions.

4.
Can J Microbiol ; 67(8): 572-583, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33656947

ABSTRACT

Host-associated microbial communities play important roles in wildlife health, but these dynamics can be influenced by environmental factors. Urbanization has numerous effects on wildlife; however, the degree to which wildlife-associated bacterial communities and potential bacterial pathogens vary across urban-rural/native habitat gradients remains largely unknown. We used 16S rRNA gene amplicon sequencing to examine bacterial communities found on Mountain Chickadee (Poecile gambeli) feathers and nests in urban and rural habitats. The feathers and nests in urban and rural sites had similar abundances of major bacterial phyla and dominant genera with pathogenic members. However, richness of bacterial communities and potential pathogens on birds were higher in urban habitats, and potential pathogens accounted for some of the differences in bacterial occurrence between urban and rural environments. We predicted habitat using potential pathogen occurrence with a 90% success rate for feather bacteria, and a 72.2% success rate for nest bacteria, suggesting an influence of urban environments on the presence of potential pathogens. We additionally observed similarities in bacterial communities between nests and their occupants, suggesting bacterial transmission between them. These findings improve our understanding of the bacterial communities associated with urban wildlife and suggest that urbanization impacts the composition of wildlife-associated bacterial communities.


Subject(s)
Bacteria , Microbiota , Animals , Bacteria/genetics , Birds , RNA, Ribosomal, 16S/genetics , Urbanization
5.
Biol Lett ; 16(6): 20200155, 2020 06.
Article in English | MEDLINE | ID: mdl-32516565

ABSTRACT

To avoid energy allocation conflicts, birds generally separate breeding, migration and moult during the annual cycle. North American passerines typically moult on the breeding grounds prior to autumn migration. However, some have evolved a moult-migration strategy in which they delay moult until stopping over during autumn migration. Rohwer et al. (2005) proposed the 'push-pull hypothesis' as an explanation for the evolution of this moult strategy, but it has not been empirically tested. Poor conditions on the breeding grounds at the end of the summer would push birds to depart prior to moult, while productive stopover locations would pull them. We tested for a relationship between moult-migration and breeding grounds aridity as measured by the normalized difference vegetation index. Our results strongly support the 'push' aspect of the push-pull hypothesis and indicate that arid breeding grounds, primarily in western North America, would drive species to evolve stopover moult-migration, although this relationship may depend upon migration distance.


Subject(s)
Animal Migration , Passeriformes , Animals , Breeding , Molting , North America , Seasons , United States
6.
Ecol Evol ; 10(7): 3338-3345, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32273991

ABSTRACT

Bird migration is typically associated with a latitudinal movement from north to south and vice versa. However, many bird species migrate seasonally with an upslope or downslope movement in a process termed altitudinal migration. Globally, 830 of the 6,579 Passeriformes species are considered altitudinal migrants and this pattern has emerged multiple times across 77 families of this order. Recent work has indicated an association between altitudinal migration and diet, but none have looked at diet as a potential evolutionary driver. Here, we investigated potential evolutionary drivers of altitudinal migration in passerines around the world by using phylogenetic comparative methods. We tested for evolutionary associations between altitudinal migration and foraging guild and primary habitat preference in passerines species worldwide. Our results indicate that foraging guild is evolutionarily associated with altitudinal migration, but this relationship varies across zoogeographical regions. In the Nearctic, herbivorous and omnivorous species are associated with altitudinal migration, while only omnivorous species are associated with altitudinal migration in the Palearctic. Habitat was not strongly linked to the evolution of altitudinal migration. While our results point to diet as a potentially important driver of altitudinal migration, the evolution of this behavior is complex and certainly driven by multiple factors. Altitudinal migration varies in its use (for breeding or molting), within a species, population, and even at the individual level. As such, the evolution of altitudinal migration is likely driven by an ensemble of factors, but this study provides a beginning framework for understanding the evolution of this complex behavior.

7.
Ecol Evol ; 7(19): 7884-7896, 2017 10.
Article in English | MEDLINE | ID: mdl-29043042

ABSTRACT

Radio frequency identification (RFID) provides a simple and inexpensive approach for examining the movements of tagged animals, which can provide information on species behavior and ecology, such as habitat/resource use and social interactions. In addition, tracking animal movements is appealing to naturalists, citizen scientists, and the general public and thus represents a tool for public engagement in science and science education. Although a useful tool, the large amount of data collected using RFID may quickly become overwhelming. Here, we present an R package (feedr) we have developed for loading, transforming, and visualizing time-stamped, georeferenced data, such as RFID data collected from static logger stations. Using our package, data can be transformed from raw RFID data to visits, presence (regular detections by a logger over time), movements between loggers, displacements, and activity patterns. In addition, we provide several conversion functions to allow users to format data for use in functions from other complementary R packages. Data can also be visualized through static or interactive maps or as animations over time. To increase accessibility, data can be transformed and visualized either through R directly, or through the companion site: http://animalnexus.ca, an online, user-friendly, R-based Shiny Web application. This system can be used by professional and citizen scientists alike to view and study animal movements. We have designed this package to be flexible and to be able to handle data collected from other stationary sources (e.g., hair traps, static very high frequency (VHF) telemetry loggers, observations of marked individuals in colonies or staging sites), and we hope this framework will become a meeting point for science, education, and community awareness of the movements of animals. We aim to inspire citizen engagement while simultaneously enabling robust scientific analysis.

8.
Ecol Evol ; 7(8): 2643-2651, 2017 04.
Article in English | MEDLINE | ID: mdl-28428855

ABSTRACT

Carotenoid-based plumage coloration plays a critical role for both inter- and intrasexual communication. Habitat and diet during molt can have important consequences for the development of the ornamental signals used in these contexts. When molt occurs away from the breeding grounds (e.g., pre-alternate molt on the wintering grounds, or stopover molt), discerning the influence of habitat and diet can be particularly important, as these effects may result in important carryover effects that influence territory acquisition or mate choice in subsequent seasons. Several species of songbirds in western North America, including the Bullock's oriole (Icterus bullockii), migrate from the breeding grounds to undergo a complete prebasic (post-breeding) molt at a stopover site in the region affected by the Mexican monsoon climate pattern. This strategy appears to have evolved several times independently in response to the harsh, food-limited late-summer conditions in the arid West, which contrast strongly with the high productivity driven by heavy rains that is characteristic of the Mexican monsoon region. Within this region, individuals may be able to optimize plumage coloration by molting in favourable areas characterized by high resource abundance. We used stable isotope analysis (δ13C, δ15N) to ask whether the diet and molt habitat/location of Bullock's orioles influenced their expression of carotenoid-based plumage coloration as well as plumage carotenoid content and composition. Bullock's orioles with lower feather δ15N values acquired more colorful plumage (orange-shifted hue) but had feathers with lower total carotenoid concentration, lower zeaxanthin concentration, and marginally lower canthaxanthin and lutein concentration. Examining factors occurring throughout the annual cycle are critical for understanding evolutionary and ecological processes. Here, we demonstrate that conditions experienced during a stopover molt, occurring hundreds to thousands of kilometers from the breeding grounds, influence the production of ornamental plumage coloration, which may carryover to influence inter- and intrasexual signaling in subsequent seasons.

9.
PLoS One ; 11(3): e0150810, 2016.
Article in English | MEDLINE | ID: mdl-26974163

ABSTRACT

Complete panmixia across the entire range of a species is a relatively rare phenomenon; however, this pattern may be found in species that have limited philopatry and frequent dispersal. American white pelicans (Pelecanus erythrorhyncos) provide a unique opportunity to examine the role of long-distance dispersal in facilitating gene flow in a species recently reported as panmictic across its broad breeding range. This species is also undergoing a range expansion, with new colonies arising hundreds of kilometers outside previous range boundaries. In this study, we use a multiple stable isotope (δ2H, δ13C, δ15N) approach to examine feather isotopic structuring at 19 pelican colonies across North America, with the goal of establishing an isotopic basemap that could be used for assigning individuals at newly established breeding sites to source colonies. Within-colony isotopic variation was extremely high, exceeding 100‰ in δ2H within some colonies (with relatively high variation also observed for δ13C and δ15N). The high degree of within-site variation greatly limited the utility of assignment-based approaches (42% cross-validation success rate; range: 0-90% success). Furthermore, clustering algorithms identified four likely isotopic clusters; however, those clusters were generally unrelated to geographic location. Taken together, the high degree of within-site isotopic variation and lack of geographically-defined isotopic clusters preclude the establishment of an isotopic basemap for American white pelicans, but may indicate that a high incidence of long-distance dispersal is facilitating gene flow, leading to genetic panmixia.


Subject(s)
Birds/physiology , Ecosystem , Gene Flow/physiology , Animals , Isotopes/metabolism , North America
10.
Oecologia ; 178(1): 161-73, 2015 May.
Article in English | MEDLINE | ID: mdl-25433695

ABSTRACT

Carotenoid-based colouration plays an important role in sexual signaling in animals as an honest indicator of individual quality during mate choice and competitive interactions. However, few studies have examined how natural variation in weather conditions influences inter-annual variation in the expression of ornamentation, potentially through affecting the dietary availability of carotenoids. In this study, we examine variation in the expression of carotenoid-based plumage colouration in relation to temperature and rainfall during the pre-moulting and moulting period over 11 years in a population of American redstarts, Setophaga ruticilla, breeding in eastern Canada. We used reflectance spectrometry of tail feathers collected from male and female redstarts to relate feather colour with weather conditions the previous breeding season during the months over which redstarts are likely to moult (June-September). At a population level, birds expressed feathers with higher red chroma and lower brightness in years following high July rainfall and low August temperature. The pattern was stronger in males, but was generally consistent across ages and sexes. Analyses of feathers from repeatedly captured birds indicated that the above patterns could be explained by individual change in feather colour. We suggest that higher rainfall during the moulting period may increase insect abundance and the availability of dietary carotenoids. This is among the first studies to show effects of weather conditions on a sexual signalling trait, which may have important consequences for sexual selection, mate choice, and the reliability of putative signals.


Subject(s)
Carotenoids/metabolism , Color , Feathers/metabolism , Passeriformes/metabolism , Pigmentation , Rain , Temperature , Animals , Canada , Diet , Female , Male , Seasons , Songbirds , Spectrum Analysis , United States
11.
Ecol Evol ; 5(24): 5892-904, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26811763

ABSTRACT

Assessing the drivers of survival across the annual cycle is important for understanding when and how population limitation occurs in migratory animals. Density-dependent population regulation can occur during breeding and nonbreeding periods, and large-scale climate cycles can also affect survival throughout the annual cycle via their effects on local weather and vegetation productivity. Most studies of survival use mark-recapture techniques to estimate apparent survival, but true survival rates remain obscured due to unknown rates of permanent emigration. This is especially problematic when assessing annual survival of migratory birds, whose movement between breeding attempts, or breeding dispersal, can be substantial. We used a multistate approach to examine drivers of annual survival and one component of breeding dispersal (habitat-specific movements) in a population of American redstarts (Setophaga ruticilla) over 11 years in two adjacent habitat types. Annual survival displayed a curvilinear relation to the Southern Oscillation Index, with lower survival during La Niña and El Niño conditions. Although redstart density had no impact on survival, habitat-specific density influenced local movements between habitat types, with redstarts being less likely to disperse from their previous year's breeding habitat as density within that habitat increased. This finding was strongest in males and may be explained by conspecific attraction influencing settlement decisions. Survival was lowest in young males, but movement was highest in this group, indicating that apparent survival rates were likely biased low due to permanent emigration. Our findings demonstrate the utility of examining breeding dispersal in mark-recapture studies and complement recent work using spatially explicit models of dispersal probability to obtain greater accuracy in survival estimates.

12.
Ecol Evol ; 4(8): 1222-32, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24834321

ABSTRACT

Plumage coloration in birds plays a critical role in communication and can be under selection throughout the annual cycle as a sexual and social signal. However, for migratory birds, little is known about the acquisition and maintenance of colorful plumage during the nonbreeding period. Winter habitat could influence the quality of colorful plumage, ultimately carrying over to influence sexual selection and social interactions during the breeding period. In addition to the annual growth of colorful feathers, feather loss from agonistic interactions or predator avoidance could require birds to replace colorful feathers in winter or experience plumage degradation. We hypothesized that conditions on the wintering grounds of migratory birds influence the quality of colorful plumage. We predicted that the quality of American redstart (Setophaga ruticilla) tail feathers regrown after experimental removal in Jamaica, West Indies, would be positively associated with habitat quality, body condition, and testosterone. Both yearling (SY) and adult (ASY) males regrew feathers with lower red chroma, suggesting reduced carotenoid content. While we did not observe a change in hue in ASY males, SY males shifted from yellow to orange plumage resembling experimentally regrown ASY feathers. We did not observe any effects of habitat, testosterone, or mass change. Our results demonstrate that redstarts are limited in their ability to adequately replace colorful plumage, regardless of habitat, in winter. Thus, feather loss on the nonbreeding grounds can affect social signals, potentially negatively carrying over to the breeding period.

13.
Proc Biol Sci ; 279(1740): 3114-20, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22513860

ABSTRACT

Numerous environmental pressures have precipitated long-term population reductions of many insect species. Population declines in aerially foraging insectivorous birds have also been detected, but the cause remains unknown partly because of a dearth of long-term monitoring data on avian diets. Chimney swifts (Chaetura pelagica) are a model aerial insectivore to fill such information gaps because their roosting behaviour makes them easy to sample in large numbers over long time periods. We report a 48-year-long (1944-1992) dietary record for the chimney swift, determined from a well-preserved deposit of guano and egested insect remains in Ontario (Canada). This unique archive of palaeo-environmental data reflecting past chimney swift diets revealed a steep rise in dichlorodiphenyltrichloroethane (DDT) and metabolites, which were correlated with a decrease in Coleoptera remains and an increase in Hemiptera remains, indicating a significant change in chimney swift prey. We argue that DDT applications decimated Coleoptera populations and dramatically altered insect community structure by the 1960s, triggering nutritional consequences for swifts and other aerial insectivores.


Subject(s)
Birds/physiology , Coleoptera/drug effects , DDT/pharmacology , Diet , Feeding Behavior/drug effects , Flight, Animal , Pesticides/pharmacology , Animals , Canada , Circadian Rhythm , DDT/administration & dosage , Feces/chemistry , Ontario , Population Dynamics , Predatory Behavior
14.
J Hered ; 102(5): 584-92, 2011.
Article in English | MEDLINE | ID: mdl-21705489

ABSTRACT

We examined the mitochondrial genetic structure of American white pelicans (Pelecanus erythrorhynchos) to: 1) verify or refute whether American white pelicans are panmictic and 2) understand if any lack of genetic structure is the result of contemporary processes or historical phenomena. Sequence analysis of mitochondrial DNA control region haplotypes of 367 individuals from 19 colonies located across their North American range revealed a lack of population genetic or phylogeographic structure. This lack of structure was unexpected because: 1) Major geographic barriers such as the North American Continental Divide are thought to limit dispersal; 2) Differences in migratory behavior are expected to promote population differentiation; and 3) Many widespread North American migratory bird species show historic patterns of differentiation resulting from having inhabited multiple glacial refugia. Further, high haplotype diversity and many rare haplotypes are maintained across the species' distribution, despite frequent local extinctions and recolonizations that are expected to decrease diversity. Our findings suggest that American white pelicans have a high effective population size and low natal philopatry. We suggest that the rangewide panmixia we observed in American white pelicans is due to high historical and contemporary gene flow, enabled by high mobility and a lack of effective physical or behavioral barriers.


Subject(s)
Birds/genetics , DNA, Mitochondrial/genetics , Gene Flow , Animal Migration , Animals , Birds/classification , Genetic Variation , Genetics, Population , Haplotypes , Phylogeny , Phylogeography
15.
Curr Biol ; 19(19): R892-3, 2009 Oct 13.
Article in English | MEDLINE | ID: mdl-19825348

ABSTRACT

Spiders are thought to be strict predators. We describe a novel exception: Bagheera kiplingi, a Neotropical jumping spider (Salticidae) that exploits a well-studied ant-plant mutualism, is predominantly herbivorous. From behavioral field observations and stable-isotope analyses, we show that the main diet of this host-specific spider comprises specialized leaf tips (Beltian food bodies; Figure 1A) from Vachellia spp. ant-acacias (formerly Acacia spp.), structures traded for protection in the plant's coevolved mutualism with Pseudomyrmex spp. ants that inhabit its hollow thorns. This is the first report of a spider that feeds primarily and deliberately on plants.


Subject(s)
Ants , Fabaceae , Feeding Behavior/physiology , Spiders/physiology , Symbiosis , Animals , Isotope Labeling , Mexico , Observation
16.
Proc Biol Sci ; 276(1662): 1619-26, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19203918

ABSTRACT

The study of sexual selection has traditionally focused on events and behaviours immediately surrounding copulation. In this study, we examine whether carry-over effects from the non-breeding season can influence the process of sexual selection in a long-distance migratory bird, the American redstart (Setophaga ruticilla). Previous work on American redstarts demonstrated that overwintering in a high-quality habitat influences spring departure dates from the wintering grounds, advances arrival dates on the breeding grounds and increases apparent reproductive success. We show that the mixed-mating strategy of American redstarts compounds the benefits of overwintering in high-quality winter habitats. Males arriving to breed in Canada from high-quality winter habitats arrive earlier than males from poor-quality habitats, resulting in a lower probability of paternity loss, a higher probability of achieving polygyny and ultimately higher realized reproductive success. Such results suggest that the process of sexual selection may be influenced by events interacting throughout the annual cycle.


Subject(s)
Animal Migration , Breeding , Mating Preference, Animal , Passeriformes/physiology , Seasons , Animals , Canada , Ecosystem , Female , Male , Passeriformes/genetics , Population Dynamics , Time Factors
17.
Oecologia ; 152(3): 449-57, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17370093

ABSTRACT

Continent-wide variation in hydrogen isotopic composition of precipitation is incorporated into animal diets, providing an intrinsic marker of geographic location at the time of tissue growth. Feathers from migratory birds are now frequently analyzed for stable-hydrogen isotopes (deltaD) to estimate the location of individuals during a preceding molt. Using known-origin birds, we tested several assumptions associated with this emerging technique. We examined hydrogen isotopic variation as a function of age, sex, feather type and the timing of molt in a marked population of American redstarts (Setophaga ruticilla) breeding in southeastern Ontario. We measured deltaD in feathers and blood from individuals that bred or hatched at our study site during the year in which those tissues were grown. Juvenile tissues from 5- to 10-day-old birds had more negative deltaD values than those from adults, which most likely reflected age-related differences in diet. Within adults, primary feathers had more negative deltaD values than contour feathers. The mean deltaD value in adult primary feathers was relatively consistent among years and with the value expected for our study population. However, among-individual variation in deltaD corresponded to an estimated latitudinal range of 6-8 degrees (650-900 km). We conclude that feathers sampled from recently hatched juveniles may not provide a reliable estimate of expected local isotopic signatures for comparison with adult feathers of unknown origin. Furthermore, we urge researchers to use caution when using deltaD values in feathers to infer geographic origin, and suggest that the best approach is to assign individuals to broad geographic zones within a species' potential molting range.


Subject(s)
Animal Migration , Geography , Passeriformes/physiology , Rain/chemistry , Age Factors , Animals , Deuterium , Feathers/anatomy & histology , Feathers/chemistry , Female , Male , Passeriformes/growth & development , Passeriformes/metabolism , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...