Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 179(Pt A): 108690, 2019 12.
Article in English | MEDLINE | ID: mdl-31491725

ABSTRACT

The New York State Department of Health conducted the Healthy Fishing Communities Program in collaboration with the Agency for Toxic Substances and Disease Registry to assess human exposure to contaminants common to Lake Ontario, Lake Erie and surrounding rivers and waterways among populations in western New York State who eat locally caught fish. The program enrolled licensed anglers and Burmese refugees and immigrants, living near four designated Great Lakes Areas of Concern: Buffalo River, Niagara River, Eighteenmile Creek, and the Rochester Embayment. These target populations were sampled and enrolled independently into the program between February and October of 2013. A core set of contaminants were measured in blood and urine of 409 licensed anglers and 206 Burmese refugees and immigrants which included lead, cadmium, mercury, PCBs, PBDEs, organochlorine pesticides (hexachlorobenzene, mirex, DDT, DDE, and chlordane and its metabolites oxychlordane and trans-Nonachlor), and PFOS and PFOA. Biomonitoring results showed that both groups had higher geometric means for blood lead, total blood mercury, and serum PFOS compared to the 2013-2014 NHANES reference levels. The Burmese refugee group also showed higher geometric means for creatinine-adjusted urine mercury and lipid-adjusted serum DDE compared to national levels. Licensed angler participants reported eating a median of 16 locally caught fish meals in the past year. Burmese participants consumed local fish throughout the year, and most frequently in the summer (median 39 fish meals or 3 times a week). The study results provide valuable information on populations at high risk of exposure to contaminants in the Great Lakes Basin of western New York. The results provide the foundation for developing and implementing public health actions to reduce potential exposures to Great Lakes pollutants.


Subject(s)
Biological Monitoring , Dietary Exposure/statistics & numerical data , Fishes , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Child , Female , Food Contamination/statistics & numerical data , Great Lakes Region , Humans , Lakes , Male , New York , Nutrition Surveys
2.
J Biol Chem ; 278(5): 2963-8, 2003 Jan 31.
Article in English | MEDLINE | ID: mdl-12433922

ABSTRACT

The transcription factor NF-kappa B has been shown to be predominantly cytoplasmically localized in the absence of an inductive signal. Stimulation of cells with inflammatory cytokines such as tumor necrosis factor alpha or interleukin-1 induces the degradation of I kappa B, the inhibitor of NF-kappa B, allowing nuclear accumulation of NF-kappa B and regulation of specific gene expression. The degradation of I kappa B is controlled initially by phosphorylation induced by the I kappa B kinase, which leads to ubiquitination and subsequent proteolysis of the inhibitor by the proteasome. We report here that NF-kappa B and I kappa B alpha (but not I kappa B beta) are also localized in the mitochondria. Stimulation of cells with tumor necrosis factor alpha leads to the phosphorylation of mitochondrial I kappa B alpha and its subsequent degradation by a nonproteasome-dependent pathway. Interestingly, expression of the mitochondrially encoded cytochrome c oxidase III and cytochrome b mRNAs were reduced by cytokine treatment of cells. Inhibition of activation of mitochondrial NF-kappa B by expression of the superrepressor form of I kappa B alpha inhibited the loss of expression of both cytochrome c oxidase III and cytochrome b mRNA. These data indicate that the NF-kappa B regulatory pathway exists in mitochondria and that NF-kappa B can negatively regulate mitochondrial mRNA expression.


Subject(s)
I-kappa B Proteins/analysis , Mitochondria, Liver/ultrastructure , Mitochondria/ultrastructure , NF-kappa B/analysis , NF-kappa B/genetics , Animals , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Humans , I-kappa B Proteins/genetics , Immunohistochemistry , Microscopy, Electron , Mitochondria/metabolism , Mitochondria, Liver/metabolism , NF-KappaB Inhibitor alpha , NF-kappa B/antagonists & inhibitors , RNA, Messenger/genetics , Rats , Tumor Necrosis Factor-alpha/pharmacology , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL