Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Behav Brain Res ; 455: 114675, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37734489

ABSTRACT

General anesthesia is considered a risk factor for postoperative cognitive dysfunction. However, it is unclear what the neuronal and cognitive consequences of general anesthesia are and whether they can be treated. One possible pathomechanism is hippocampal neurogenesis. We investigated how the anesthetic isoflurane affects adult hippocampal neurogenesis and associated cognitive functions and whether the neurogenic stimulus of physical activity reverses isoflurane-induced changes. We exposed young adult mice to isoflurane (ISO) - half had access to a running wheel (ISO-RW). Both groups were compared with a control condition (CTR; CTR-RW). Cell proliferation and survival in the dentate gyrus of the hippocampus were quantified histologically 48 h and 3 weeks after anesthesia by bromodeoxyuridine incorporation. Cell phenotype was determined by expression of neuronal markers, and the extent of continuous endogenous neuronal proliferation was estimated from the number of doublecortin-positive cells. The Morris water maze was used to test hippocampus-dependent functions. We found that isoflurane decreased proliferation of neuronal progenitor cells, whereas survival of mature neurons remained intact. Consistent with intact neuronal survival, spatial memory associated with neurogenesis also proved intact in the Morris water maze despite isoflurane exposure. Physical activity attenuated the observed neuronal changes by preventing the decrease in newborn neuronal progenitor cells and the decline in continuous endogenous neuronal proliferation in isoflurane-treated animals. In conclusion, isoflurane selectively impairs neuronal proliferation but not survival or neurogenesis-linked cognition in adult mice. The observed adverse effects can be attenuated by physical activity, a cost-effective means of preventing the neurogenic consequences of general anesthesia.

2.
J Cereb Blood Flow Metab ; 43(8): 1400-1418, 2023 08.
Article in English | MEDLINE | ID: mdl-37021637

ABSTRACT

Paracrine cerebral Interleukin 6 (Il6) is relevant for stroke recovery, but systemic Il6 elevation may worsen outcome. Hence, paracrine Il6 response modulation within the neurovascular unit has emerged as an attractive therapeutic approach. Lithium modulates Il6 responses and improves stroke outcome. However, lithium may cause serious adverse effects. Here, we report that Zincfinger protein 580 (Zfp580) mediates the effects of lithium on Il6 signaling. In contrast to lithium, Zfp580 inactivation had no neurotoxic effects, and Zfp580 knock out mice showed no phenotypic changes in cognitive and motor function behavioral tests. We discovered that lithium and hypoxia disinhibited Il6 via Zfp580 suppression and post-translational modification by small ubiquitin-like modifier (SUMO). After transient middle cerebral artery occlusion, loss of Zfp580 reduced paracrine Il6 and increased Il6 trans-signaling. Aside from modulating Il6 signaling, Zfp580 loss improved endothelial resilience to ischemia, was highly neuroprotective resulting in smaller infarcts and enhanced use-dependent neuroplasticity, all of which led to improved functional outcome. In conclusion, inactivation of Zfp580 exerts positive effects on multiple key mechanisms without exhibiting relevant adverse side effects, making it potentially a more specific and effective treatment target for stroke recovery than lithium. To fully assess its potential, Zfp580 inhibitors must be developed.


Subject(s)
Brain Ischemia , Stroke , Mice , Animals , Interleukin-6 , Lithium , Transcription Factors/metabolism , Stroke/drug therapy , Signal Transduction
3.
PLoS One ; 18(2): e0278325, 2023.
Article in English | MEDLINE | ID: mdl-36745631

ABSTRACT

Microglia are the immune effector cells of the central nervous system (CNS) and react to pathologic events with a complex process including the release of nitric oxide (NO). NO is a free radical, which is toxic for all cells at high concentrations. To target an exaggerated NO release, we tested a library of 16 544 chemical compounds for their effect on lipopolysaccharide (LPS)-induced NO release in cell line and primary neonatal microglia. We identified a compound (C1) which significantly reduced NO release in a dose-dependent manner, with a low IC50 (252 nM) and no toxic side effects in vitro or in vivo. Target finding strategies such as in silico modelling and mass spectroscopy hint towards a direct interaction between C1 and the nitric oxide synthase making C1 a great candidate for specific intra-cellular interaction with the NO producing machinery.


Subject(s)
Microglia , Nitric Oxide , Infant, Newborn , Humans , Microglia/metabolism , Nitric Oxide/metabolism , Neuroinflammatory Diseases , Nitric Oxide Synthase Type II/metabolism , Cell Line , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism
4.
Brain Behav Immun ; 91: 89-104, 2021 01.
Article in English | MEDLINE | ID: mdl-32927021

ABSTRACT

Microglia are the immune cells of the brain and become activated during any type of brain injury. In the middle cerebral artery occlusion (MCAo) model, a mouse model for ischemic stroke, we have previously shown that microglia and invaded monocytes upregulate the expression of the muscarinic acetylcholine receptor 3 (M3R) in the ischemic lesion. Here we tested whether this upregulation has an impact on the pathogenesis of MCAo. We depleted the m3R receptor in microglia, but not in circulating monocytes by giving tamoxifen to CX3CR1-CreERT+/+M3Rflox/flox (M3RKOmi) animals 3 weeks prior to MCAo. We found that M3RKOmi male mice had bigger lesions, more pronounced motor deficits after one week and cognitive deficits after about one month compared to control males. The density of Iba1+ cells was lower in the lesions of M3RKO male mice in the early, but not in the late disease phase. In females, these differences were not significant. By giving tamoxifen 1 week prior to MCAo, we depleted m3R in microglia and in circulating monocytes (M3RKOmi/mo). Male M3RKOmi/mo did not differ in lesion size, but had a lower survival rate, showed motor deficits and a reduced accumulation of Iba1+ positive cells into the lesion site. In conclusion, our data suggest that the upregulation of m3R in microglia and monocytes in stroke has a beneficial effect on the clinical outcome in male mice.


Subject(s)
Brain Ischemia , Microglia , Receptor, Muscarinic M3/genetics , Stroke , Animals , Brain , Disease Models, Animal , Female , Infarction, Middle Cerebral Artery , Male , Mice , Mice, Inbred C57BL
5.
J Cereb Blood Flow Metab ; 41(1): 132-145, 2021 01.
Article in English | MEDLINE | ID: mdl-32054373

ABSTRACT

The outcome of stroke is greatly influenced by the state of the blood-brain barrier (BBB). The BBB endothelium is sealed paracellularly by tight junction (TJ) proteins, i.e., claudins (Cldns) and the redox regulator occludin. Functions of Cldn3 and occludin at the BBB are largely unknown, particularly after stroke. We address the effects of Cldn3 deficiency and stress factors on the BBB and its TJs. Cldn3 tightened the BBB for small molecules and ions, limited endothelial endocytosis, strengthened the TJ structure and controlled Cldn1 expression. After middle cerebral artery occlusion (MCAO) and 3-h reperfusion or hypoxia of isolated brain capillaries, Cldn1, Cldn3 and occludin were downregulated. In Cldn3 knockout mice (C3KO), the reduction in Cldn1 was even greater and TJ ultrastructure was impaired; 48 h after MCAO of wt mice, infarct volumes were enlarged and edema developed, but endothelial TJs were preserved. In contrast, junctional localization of Cldn5 and occludin, TJ density, swelling and infarction size were reduced in affected brain areas of C3KO. Taken together, Cldn3 and occludin protect TJs in stroke, and this keeps the BBB intact. However, functional Cldn3, Cldn3-regulated TJ proteins and occludin promote edema and infarction, which suggests that TJ modulation could improve the outcome of stroke.


Subject(s)
Blood-Brain Barrier/physiopathology , Brain Ischemia/physiopathology , Edema/physiopathology , Stroke/physiopathology , Animals , Humans , Male , Mice , Tight Junctions/metabolism
6.
Behav Brain Res ; 396: 112875, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32858115

ABSTRACT

Monoclonal anti-proprotein convertase subtilisin/kexin type 9 (PSCK9) neutralizing antibodies effectively lower plasma cholesterol levels and decrease cardiovascular events but also raised some concern that cognitive function could worsen as a side effect. Here, we performed experiments in mice to characterize the effect of anti-PCSK9 antibodies on behavior and cognitive function in detail. APOE*3Leiden.CETP mice and B6129SF1/J wildtype mice were fed a Western type diet and treated with the fully human anti-PCSK9 antibody CmAb1 (PL-45134; 10mg*kg-1 s.c.) or vehicle for 6 weeks. Locomotor activity, anxiety levels, recognition memory, and spatial learning were investigated using the open field, novel object recognition test, and Morris water maze, respectively. Serum cholesterol levels in APOE*3Leiden.CETP mice after treatment with anti-PCSK9 antibody were significantly lower compared to controls whereas cholesterol levels in B6129SF1/J wildtype mice remained unchanged at low levels. No apparent differences were found regarding locomotor activity, anxiety, recognition memory, and spatial learning between animals treated with anti-PCSK9 antibody or vehicle in APOE*3Leiden.CETP and B6129SF1/J wildtype mice. In this study, we found no evidence that treatment with anti-PCSK9 antibodies lead to differences in behavior or changes of cognition in mice.


Subject(s)
Behavior, Animal/drug effects , Locomotion/drug effects , PCSK9 Inhibitors , Protease Inhibitors/pharmacology , Recognition, Psychology/drug effects , Spatial Learning/drug effects , Animals , Antibodies , Mice , Proprotein Convertase 9/immunology
8.
Sci Rep ; 10(1): 18215, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33106576

ABSTRACT

Glucose hypometabolism potentially contributes to Alzheimer's disease (AD) and might even represent an underlying mechanism. Here, we investigate the relationship of diet-induced metabolic stress and AD as well as the therapeutic potential of chia seeds as a modulator of glucose metabolism in the APP23 mouse model. 4-6 (pre-plaque stage, PRE) and 28-32 (advanced-plaque stage, ADV) weeks old APP23 and wild type mice received pretreatment for 12 weeks with either sucrose-rich (SRD) or control diet, followed by 8 weeks of chia seed supplementation. Although ADV APP23 mice generally showed functioning glucose homeostasis, they were more prone to SRD-induced glucose intolerance. This was accompanied by elevated corticosterone levels and mild insulin insensitivity. Chia seeds improved spatial learning deficits but not impaired cognitive flexibility, potentially mediated by amelioration of glucose tolerance, attenuation of corticosterone levels and reversal of SRD-induced elevation of pro-inflammatory cytokine levels. Since cognitive symptoms and plaque load were not aggravated by SRD-induced metabolic stress, despite enhanced neuroinflammation in the PRE group, we conclude that impairments of glucose metabolism do not represent an underlying mechanism of AD in this mouse model. Nevertheless, chia seeds might provide therapeutic potential in AD as shown by the amelioration of cognitive symptoms.


Subject(s)
Alzheimer Disease/diet therapy , Amyloid beta-Protein Precursor/genetics , Cognition/drug effects , Disease Models, Animal , Glucose/metabolism , Insulin Resistance , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animal Feed , Animals , Diet , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Salvia/chemistry , Seeds/chemistry
9.
Sci Rep ; 10(1): 11165, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32636413

ABSTRACT

Laboratory male mice are often housed individually due to aggressive behavior or experimental requirements, though social isolation can cause welfare issues. As a strategy to refine housing of male mice, we introduce the separated pair housing system. A perforated transparent wall divides the cage into two compartments and allows olfactory, acoustic, and visual communication between the two mice but prevents fighting and injuries. Long-term effects of separated pair housing on well-being and distress of adult male C57BL/6JRj mice were investigated and compared with both single- and group-housed mice. Behavioral analysis after eight weeks in three different housing systems revealed no differences in burrowing performance, social interaction, anxiety, and stress hormone concentrations. However, pair-housed mice built more complex nests compared to single-housed mice and the nest position suggested that pair-housed mice preferred the close proximity to their cage mates. Moreover, pair-housed mice showed less locomotor activity compared to group- and single-housed mice. Body weight was higher in group-housed mice. All in all, no unambiguous long-term beneficial effects of pair housing on the well-being were found. However, the findings emphasized that effects of the housing systems on behavioral, physical, and biochemical parameters must be considered in the design of animal experimental studies.


Subject(s)
Housing, Animal , Mice, Inbred C57BL/psychology , Animal Welfare , Animals , Behavior, Animal , Corticosterone/analysis , Drug Combinations , Ferrous Compounds/chemistry , Hair/chemistry , Male , Mice , Mucins/chemistry , Social Interaction , Testosterone/analysis , Testosterone/metabolism
10.
PLoS Biol ; 17(4): e3000188, 2019 04.
Article in English | MEDLINE | ID: mdl-30964856

ABSTRACT

The need for replication of initial results has been rediscovered only recently in many fields of research. In preclinical biomedical research, it is common practice to conduct exact replications with the same sample sizes as those used in the initial experiments. Such replication attempts, however, have lower probability of replication than is generally appreciated. Indeed, in the common scenario of an effect just reaching statistical significance, the statistical power of the replication experiment assuming the same effect size is approximately 50%-in essence, a coin toss. Accordingly, we use the provocative analogy of "replicating" a neuroprotective drug animal study with a coin flip to highlight the need for larger sample sizes in replication experiments. Additionally, we provide detailed background for the probability of obtaining a significant p value in a replication experiment and discuss the variability of p values as well as pitfalls of simple binary significance testing in both initial preclinical experiments and replication studies with small sample sizes. We conclude that power analysis for determining the sample size for a replication study is obligatory within the currently dominant hypothesis testing framework. Moreover, publications should include effect size point estimates and corresponding measures of precision, e.g., confidence intervals, to allow readers to assess the magnitude and direction of reported effects and to potentially combine the results of initial and replication study later through Bayesian or meta-analytic approaches.


Subject(s)
Biomedical Research/methods , Reproducibility of Results , Research Design/statistics & numerical data , Animals , Bayes Theorem , Biomedical Research/statistics & numerical data , Data Interpretation, Statistical , Humans , Models, Statistical , Probability , Publications , Sample Size
11.
Cell Mol Life Sci ; 76(10): 1987-2002, 2019 May.
Article in English | MEDLINE | ID: mdl-30734065

ABSTRACT

At the blood-brain barrier (BBB), claudin (Cldn)-5 is thought to be the dominant tight junction (TJ) protein, with minor contributions from Cldn3 and -12, and occludin. However, the BBB appears ultrastructurally normal in Cldn5 knock-out mice, suggesting that further Cldns and/or TJ-associated marvel proteins (TAMPs) are involved. Microdissected human and murine brain capillaries, quickly frozen to recapitulate the in vivo situation, showed high transcript expression of Cldn5, -11, -12, and -25, and occludin, but also abundant levels of Cldn1 and -27 in man. Protein levels were quantified by a novel epitope dilution assay and confirmed the respective mRNA data. In contrast to the in vivo situation, Cldn5 dominates BBB expression in vitro, since all other TJ proteins are at comparably low levels or are not expressed. Cldn11 was highly abundant in vivo and contributed to paracellular tightness by homophilic oligomerization, but almost disappeared in vitro. Cldn25, also found at high levels, neither tightened the paracellular barrier nor interconnected opposing cells, but contributed to proper TJ strand morphology. Pathological conditions (in vivo ischemia and in vitro hypoxia) down-regulated Cldn1, -3, and -12, and occludin in cerebral capillaries, which was paralleled by up-regulation of Cldn5 after middle cerebral artery occlusion in rats. Cldn1 expression increased after Cldn5 knock-down. In conclusion, this complete Cldn/TAMP profile demonstrates the presence of up to a dozen TJ proteins in brain capillaries. Mouse and human share a similar and complex TJ profile in vivo, but this complexity is widely lost under in vitro conditions.


Subject(s)
Blood-Brain Barrier , Claudin-5/genetics , Tight Junction Proteins/genetics , Tight Junctions/metabolism , Adult , Animals , Brain/blood supply , Brain/metabolism , Cells, Cultured , Claudin-5/metabolism , Female , Gene Expression , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Middle Aged , Protein Isoforms/genetics , Protein Isoforms/metabolism , Tight Junction Proteins/metabolism , Tight Junctions/ultrastructure
12.
J Cereb Blood Flow Metab ; 39(2): 313-323, 2019 02.
Article in English | MEDLINE | ID: mdl-28829217

ABSTRACT

Lesion volume measurements with magnetic resonance imaging are widely used to assess outcome in rodent models of stroke. In this study, we improved a mathematical framework to correct lesion size for edema which is based on manual delineation of the lesion and hemispheres. Furthermore, a novel MATLAB toolbox to register mouse brain MR images to the Allen brain atlas is presented. Its capability to calculate edema-corrected lesion size was compared to the manual approach. Automated image registration performed equally well in in a mouse middle cerebral artery occlusion model (Pearson r = 0.976, p = 2.265e-11). Information encapsulated in the registration was used to generate maps of edema induced tissue volume changes. These showed discrepancies to simplified tissue models underlying the manual approach. The presented techniques provide biologically more meaningful, voxel-wise biomarkers of vasogenic edema after stroke.


Subject(s)
Blood-Brain Barrier/diagnostic imaging , Brain Edema , Magnetic Resonance Imaging , Stroke , Animals , Brain Edema/diagnostic imaging , Brain Edema/etiology , Disease Models, Animal , Male , Mice , Stroke/complications , Stroke/diagnostic imaging
13.
PLoS Biol ; 15(3): e2001307, 2017 03.
Article in English | MEDLINE | ID: mdl-28282371

ABSTRACT

Despite the potential benefits of sequential designs, studies evaluating treatments or experimental manipulations in preclinical experimental biomedicine almost exclusively use classical block designs. Our aim with this article is to bring the existing methodology of group sequential designs to the attention of researchers in the preclinical field and to clearly illustrate its potential utility. Group sequential designs can offer higher efficiency than traditional methods and are increasingly used in clinical trials. Using simulation of data, we demonstrate that group sequential designs have the potential to improve the efficiency of experimental studies, even when sample sizes are very small, as is currently prevalent in preclinical experimental biomedicine. When simulating data with a large effect size of d = 1 and a sample size of n = 18 per group, sequential frequentist analysis consumes in the long run only around 80% of the planned number of experimental units. In larger trials (n = 36 per group), additional stopping rules for futility lead to the saving of resources of up to 30% compared to block designs. We argue that these savings should be invested to increase sample sizes and hence power, since the currently underpowered experiments in preclinical biomedicine are a major threat to the value and predictiveness in this research domain.


Subject(s)
Biomedical Research , Research Design
14.
Sci Transl Med ; 7(299): 299ra121, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26246166

ABSTRACT

Numerous treatments have been reported to provide a beneficial outcome in experimental animal stroke models; however, these treatments (with the exception of tissue plasminogen activator) have failed in clinical trials. To improve the translation of treatment efficacy from bench to bedside, we have performed a preclinical randomized controlled multicenter trial (pRCT) to test a potential stroke therapy under circumstances closer to the design and rigor of a clinical randomized control trial. Anti-CD49d antibodies, which inhibit the migration of leukocytes into the brain, were previously investigated in experimental stroke models by individual laboratories. Despite the conflicting results from four positive and one inconclusive preclinical studies, a clinical trial was initiated. To confirm the preclinical results and to test the feasibility of conducting a pRCT, six independent European research centers investigated the efficacy of anti-CD49d antibodies in two distinct mouse models of stroke in a centrally coordinated, randomized, and blinded approach. The results pooled from all research centers revealed that treatment with CD49d-specific antibodies significantly reduced both leukocyte invasion and infarct volume after the permanent distal occlusion of the middle cerebral artery, which causes a small cortical infarction. In contrast, anti-CD49d treatment did not reduce lesion size or affect leukocyte invasion after transient proximal occlusion of the middle cerebral artery, which induces large lesions. These results suggest that the benefits of immune-targeted approaches may depend on infarct severity and localization. This study supports the feasibility of performing pRCTs.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Brain Ischemia/drug therapy , Disease Models, Animal , Drug Evaluation, Preclinical , Integrin alpha4/immunology , Acute Disease , Animals , Brain Ischemia/immunology , Humans , Mice , Random Allocation , Treatment Outcome
15.
Circulation ; 131(20): 1772-82, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25794850

ABSTRACT

BACKGROUND: Poststroke angiogenesis contributes to long-term recovery after stroke. Signal transducer and activator of transcription-3 (Stat3) is a key regulator for various inflammatory signals and angiogenesis. It was the aim of this study to determine its function in poststroke outcome. METHODS AND RESULTS: We generated a tamoxifen-inducible and endothelial-specific Stat3 knockout mouse model by crossbreeding Stat3(floxed/KO) and Tie2-Cre(ERT2) mice. Cerebral ischemia was induced by 30 minutes of middle cerebral artery occlusion. We demonstrated that endothelial Stat3 ablation did not alter lesion size 2 days after ischemia but did worsen functional outcome at 14 days and increase lesion size at 28 days. At this late time point vascular Stat3 expression and phosphorylation were still increased in wild-type mice. Gene array analysis of a CD31-enriched cell population of the neurovascular niche showed that endothelial Stat3 ablation led to a shift toward an antiangiogenic and axon growth-inhibiting micromilieu after stroke, with an increased expression of Adamts9. Remodeling and glycosylation of the extracellular matrix and microglia proliferation were increased, whereas angiogenesis was reduced. CONCLUSIONS: Endothelial Stat3 regulates angiogenesis, axon growth, and extracellular matrix remodeling and is essential for long-term recovery after stroke. It might serve as a potent target for stroke treatment after the acute phase by fostering angiogenesis and neuroregeneration.


Subject(s)
Endothelium, Vascular/metabolism , Infarction, Middle Cerebral Artery/physiopathology , Neovascularization, Physiologic/physiology , Neuronal Plasticity/physiology , STAT3 Transcription Factor/physiology , ADAM Proteins/biosynthesis , ADAM Proteins/genetics , ADAMTS9 Protein , Animals , Axons/physiology , Brain/pathology , Cellular Microenvironment , Cerebrovascular Circulation , Convalescence , Extracellular Matrix Proteins/metabolism , Gene Expression Profiling , Infarction, Middle Cerebral Artery/pathology , Mice , Mice, Knockout , Microglia/pathology , Oligonucleotide Array Sequence Analysis , Phosphorylation , Protein Processing, Post-Translational , Recovery of Function , STAT3 Transcription Factor/deficiency , STAT3 Transcription Factor/genetics , Signal Transduction/physiology
16.
Stroke ; 45(12): 3675-83, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25352483

ABSTRACT

BACKGROUND AND PURPOSE: Muscle wasting is a common complication accompanying stroke. Although it is known to impair poststroke recovery, the mechanisms of subacute catabolism after stroke have not been investigated in detail. The aim of this study is to investigate mechanisms of local and systemic catabolism and muscle wasting (sarcopenia) in a model of ischemic stroke systematically. METHODS: Changes in body composition and catabolic activation in muscle tissue were studied in a mouse model of acute cerebral ischemia (temporal occlusion of the middle cerebral artery). Tissue wasting (nuclear magnetic resonance spectroscopy), tissue catabolism (caspases-3 and -6, myostatin), and proteasome activity were assessed. Food intake, activity levels, and energy expenditure were assessed, and putative mechanisms of postischemic wasting were tested with appropriate interventions. RESULTS: Severe weight loss in stroke animals (day 3: weight loss, -21.7%) encompassed wasting of muscle (-12%; skeletal and myocardium) and fat tissue (-27%). Catabolic signaling and proteasome activity were higher in stroke animals in the contralateral and in the ipsilateral leg. Cerebral infarct severity correlated with catabolic activity only in the contralateral leg but not in the ipsilateral leg. Lower energy expenditure in stroke animals together with normal food intake and activity levels suggests compensatory mechanisms to regain weight. Interventions (high caloric feeding, ß-receptor blockade, and antibiotic treatment) failed to prevent proteolytic activation and muscle wasting. CONCLUSIONS: Catabolic pathways of muscle tissue are activated after stroke. Impaired feeding, sympathetic overactivation, or infection cannot fully explain this catabolic activation. Wasting of the target muscle of the disrupted innervation correlated to severity of brain injury. Our data indicate the presence of a stroke-specific sarcopenia.


Subject(s)
Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/etiology , Sarcopenia/etiology , Stroke/complications , Stroke/metabolism , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Sarcopenia/metabolism , Sarcopenia/pathology , Signal Transduction/physiology , Stroke/pathology
17.
J Cereb Blood Flow Metab ; 33(3): 330-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23232947

ABSTRACT

Experimental treatment strategies and neuroprotective drugs that showed therapeutic promise in animal models of stroke have failed to produce beneficial effects in human stroke patients. The difficulty in translating preclinical findings to humans represents a major challenge in cerebrovascular research. The reasons behind this translational road block might be explained by a number of factors, including poor quality control in various stages of the research process, the validity of experimental stroke models, and differences in drug administration and pharmacokinetics. Another major difference between animal studies and clinical trials is the choice of end point or outcome measures. Here, we discuss the necessity of poststroke behavioral testing to bridge the gap between clinical and experimental end points. We review established sensory-motor tests for outcome determination after focal ischemia based on the published literature as well as our own personal experience. Selected tests are described in more detail and good laboratory practice standards for behavioral testing are discussed. This review is intended for stroke researchers planning to use behavioral testing in mice.


Subject(s)
Behavior, Animal , Brain Ischemia/physiopathology , Stroke/physiopathology , Animals , Brain Ischemia/psychology , Disease Models, Animal , Humans , Mice , Stroke/psychology
18.
Neuropharmacology ; 61(3): 433-41, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21419787

ABSTRACT

Deficiencies in serotonergic neurotransmission are involved in the pathophysiology of depression. Due to its modulatory effect on serotonin (5-HT) release, the 5-HT(1A)-receptor is thought to play a decisive role in the therapy of this mood disorder. However, it is not fully understood how antidepressant effects are mediated by pre- and postsynaptic receptor sites. In this study we examined the impact of postsynaptic 5-HT(1A)-receptor over-expression in corticolimbic areas of male and female mice on the performance in the forced swim-test (FST). Furthermore, we investigated their response to the serotonin selective reuptake inhibitor (SSRI) citalopram in comparison to the selective noradrenaline reuptake inhibitor reboxetine, as well as the partial 5-HT(1A)-receptor agonists, buspirone and S 15535. Additionally, these drugs were evaluated in the open field-test in order to observe effects on motor activity. The density of 5-HT(1A)-receptors in discrete corticolimbic regions was determined in detail by quantitative autoradiography with [(3)H]8-OH-DPAT to investigate genotype as well as sex dependent differences in the expression pattern. [(3)H]8-OH-DPAT binding differed depending on sex with female mice of both genotypes displaying higher receptor binding in distinct brain areas. In the FST untreated male but not female over-expressing (OE) mice showed an antidepressant-like behaviour compared to wild-type (WT) mice. Citalopram yielded an antidepressant effect without influencing locomotor activity in OE mice but not in WT mice. Reboxetine had no antidepressant-like effect in OE mice, but sex-dependently in WT mice. The two partial agonists, buspirone and S 15535 produced no antidepressant-like activity in both genotypes and sexes, but aberrant motor effects. The antidepressant-like phenotype of male transgenic mice accounts for an involvement of postsynaptic 5-HT(1A)-receptors in the FST behaviour. In addition, the selective over-expression of postsynaptic 5-HT(1A)-receptors in mice contributes to the antidepressant response to citalopram in the FST. Although further pharmacological analysis is required, the data provide novel support for a role of postsynaptic 5-HT(1A)-receptors in the effects of SSRIs.


Subject(s)
Antidepressive Agents/therapeutic use , Depression/drug therapy , Nerve Tissue Proteins/biosynthesis , Neurons/drug effects , Neurons/metabolism , Receptor, Serotonin, 5-HT1A/biosynthesis , Adrenergic Uptake Inhibitors/therapeutic use , Animals , Antidepressive Agents/adverse effects , Behavior, Animal/drug effects , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Citalopram/adverse effects , Citalopram/therapeutic use , Female , Limbic System/drug effects , Limbic System/metabolism , Male , Mice , Mice, Transgenic , Morpholines/adverse effects , Morpholines/therapeutic use , Motor Activity/drug effects , Nerve Tissue Proteins/genetics , Organ Specificity , Reboxetine , Receptor, Serotonin, 5-HT1A/genetics , Serotonin 5-HT1 Receptor Agonists/adverse effects , Serotonin 5-HT1 Receptor Agonists/therapeutic use , Selective Serotonin Reuptake Inhibitors/adverse effects , Selective Serotonin Reuptake Inhibitors/therapeutic use , Sex Characteristics
19.
J Neurosci Res ; 87(3): 776-83, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-18831004

ABSTRACT

The dt(sz) mutant hamster represents a unique rodent model of idiopathic paroxysmal dystonia. Previous data, collected post-mortem or in anesthetized hamsters under basal conditions, indicated the critical involvement of enhanced striatal neuronal activity. To assess the importance of an enhanced striatal neuronal activity directly during a dystonic episode, continuous monitoring of changes in brain metabolism and therefore neuronal activity indirectly in awake, freely moving animals is necessary. Determination of CNS metabolism by NADH measurement by laser-induced fluorescence spectroscopy in conscious dt(sz) and nondystonic control hamsters revealed reversible decreased NADH fluorescence during dystonic episodes. The degree of change corresponded to the severity of dystonia. This study represents the first application of this innovative method in freely moving animals exhibiting a movement disorder. Our data clearly confirm that the expression of paroxysmal dystonia in dt(sz) mutant hamsters is associated with enhanced striatal neuronal activity and further underscore the versatile application of NADH fluorescence measurements in neuroscience.


Subject(s)
Corpus Striatum/metabolism , Dystonia/metabolism , NAD/metabolism , Neurons/metabolism , Analysis of Variance , Animals , Area Under Curve , Cricetinae , Female , Male , Mesocricetus , Physical Stimulation , Spectrometry, Fluorescence
20.
Pharmacol Biochem Behav ; 92(1): 76-81, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19010345

ABSTRACT

Even though the role of the serotonin1A (5-HT(1A))-receptor for cognitive processes is undisputed, the exact involvement of pre- and postsynaptic sites remains unexplained. Recently, we introduced a mouse line overexpressing the 5-HT(1A)-receptor in the hippocampus and cortex. In this study we investigated in comparison to wild-type mice their cognitive abilities using the Morris water-maze task and inhibitory avoidance test. Acute effects of pre- and posttraining administered 8-OH-DPAT (0.03-0.3 mg/kg i.p.) were examined in the inhibitory avoidance test. Additionally, habituation learning was studied in the hole-board test. Transgenic mice showed no overall learning deficit. Spatial learning and memory revealed in the Morris water-maze task was comparable to wild-type mice, and both genotypes habituated to the hole-board arena in a similar manner. Comparing the performance of both genotypes in the inhibitory avoidance test, cognitive functions of transgenic mice seemed to be slightly impaired. When 8-OH-DPAT was administered pretraining an amnesic effect was produced only in transgenic mice and only at the highest dose (0.3 mg/kg). Posttraining administered 0.3 mg/kg 8-OH-DPAT did not affect the performance of both genotypes. Overall, the cortical and hippocampal overexpression of the 5-HT(1A)-receptor had no major effect on cognitive functions in mice, suggesting that changes in the 5-HT(1A)-receptor density are not necessarily accompanied with alterations of learning and memory processes.


Subject(s)
Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Memory Disorders/chemically induced , Memory Disorders/psychology , Serotonin 5-HT1 Receptor Agonists , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Animals , Avoidance Learning/drug effects , Cues , Male , Maze Learning/drug effects , Memory/drug effects , Mice , Mice, Transgenic , Serotonin Receptor Agonists/pharmacology , Space Perception/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...